
www.manaraa.com

www.manaraa.com

BUSINESS
COMPONENT-BASED

SOFTWARE ENGINEERING

www.manaraa.com

THE KLUWER INTERNATIONAL SERIES
IN ENGINEERING AND COMPUTER SCIENCE

www.manaraa.com

BUSINESS
COMPONENT-BASED

SOFTWARE ENGINEERING

edited by

Franck Barbier
Universite de Pau, LIUPPA

France

ff
SPRINGER SCIENCE+BUSINESS MEDIA, L L C

www.manaraa.com

Library of Congress Cataloging-in-Publication Data

A C L P . Catalogue record for this book is available
from the Library of Congress.

Barbier, Franck
Business Component-Based Software Engineering
ISBN 978-1-4613-5429-1 ISBN 978-1-4615-1175-5 (eBook)
DOI 10.1007/978-1-4615-1175-5

Copyright © 2003 by Springer Science+Business Media New York
Originally published by Kluwer Academic Publishers in 2003
Softcover reprint of the hardcover 1st edition 2003

Al l rights reserved. No part of this work may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, microfilming, recording, or otherwise, without the written
permission from the Publisher, with the exception of any material supplied
specifically for the purpose of being entered and executed on a computer system,
for exclusive use by the purchaser of the work.

Printed on acid-free paper.

www.manaraa.com

TABLE OF CONTENTS

Preface .. vii

1. Business Components

Franck Barbier and Colin Atkinson ... 1

2. Model-Driven, Component-Based Development

Colin Atkinson and Hans-Gerd Gross .. 27

3. SCARLET: Light-Weight Component Selection in
BANKSEC

Neil Maiden and Hyoseob Kim49

4. Built-In Contract Testing for Component-Based
Development

Hans-Gerd Gross, Colin Atkinson, Franck Barbier, Nicolas Belloir and
Jean-Michel Bruel. ... 65

5. Interfaces and Techniques for Runtime Testing of
Component-Based Systems

Jonathan Vincent, Graham King, Peter Lay and John Kinghorn 83

6. The NEPTUNE Technology to Verify and to Document
Software Components

Juan Carlos Cruellas, Jean-Paul Bodeveix, Thierry Millan and Agusti
Canals .. 101

7. The OOSPICE Assessment Component: Customizing
Software Process Assessment to CBD

Friedrich Stall inger, Brian Henderson-Sellers and John Torgersson 119

8. The OOSPICE Methodology Component: Creating a CBD
Process Standard

Brian Henderson-Sellers, Friedrich Stallinger and Bruno Lefever 135

9. QCCS: Quality Controlled Component-Based Software
Development

Torben Weis, Noel Plouzeau, Gabriel Amor6s, Petr Donth, Kurt Geihs,
Jean-Marc Jezequel and Anne-Marie Sassen .. 151

www.manaraa.com

10. Components for Embedded Devices: The PECOS
Approach

Thomas Genssler, Alexander Christoph, Michael Winter and Benedikt
Schulz .. 167

11. Model-Based Risk Assessment in a Component-Based
Software Engineering Process: The CORAS Approach to
Identify Security Risks

Ketil Stolen, Folker den Braber, Theo Dimitrakos, Rune Friedriksen,
Bjorn Axel Gran, Siv-Hilde Houmb, Yannis C. Stamatiou and Jan 0yvind
Aagedal. ... 189

12. A Vocabulary of Building Elements for Real-Time
Systems Architectures

Jose Luis Fem<indez-Sanchez .. 209

13. COTS Component-Based System Development: Processes
and Problems

Gerald Kotonya, Walter Onyino, John Hutchinson, Peter Sawyer and Joan
Canal. ... 227

14. Component-Based Software Measurement

Yingxu Wang ... 24 7

Biographies 263

VI

www.manaraa.com

PREFACE

Component-Based Software Engineering (CBSE) IS increasingly
becoming a significant focus of research in academic areas of computer
science as well as in the software industry. Despite the progresses relating to
object-oriented programming, design and modelling during the '90s, reuse
and reusability of software entities are nowadays slowed down by new
factors. Thus, the size of components, their deployment capability, their
compatibility and interoperability features with respect to their incorporation
into heterogeneous distributed environments, their faults tolerance and, above
all, their ability to fulfil performance conditions are all critical and crucial
expectations of software engineers.

The idea of a component in epistemology is old and is linked to Descartes'
method in the 17th century: "diviser chacune des difficultes que j' examinerais
en aut ant de parcelles qu'il se pourrait et qu'il serait requis pour mieux les
resoudre". In English, this means that the parts ("parcelles") of a problem are
to be divided into smaller ones until a way is found to easily and efficiently
"solve" them. Unfortunately, solving all parts one by one (recursively) is not
equivalent to solving their sum resulting from their integration. Applying this
principle in software engineering supposes that parts are thus separated but
equipped with specific properties so that their future assembly is really
optimised. Object-orientation has brought new ideas on this, especially with
the notion of encapsulation: parts are endowed with some protection in order
to avoid undesired side-effects relating to their mutual interaction.
Nevertheless, object-oriented components like classes or, at a higher level of
granularity, software aggregates and patterns in 00, cannot be considered as
the overall problems of CBSE.

The evolution of the software market has made emergent many kinds of
software parts which do not always conform to the theory of object
orientation: for instance, binary components such Windows' DLLs. On the
other hand, component paradigms like CCM (COREA Component Model),
lavaBeans and Enterprise lavaBeans have enriched the original spirit of
object-orientation. Besides, some normative approaches have advocated
canonical and implementation-free component models: e.g. CORBA
components essentially written in IDL and implemented by means of various
programming languages.

Despite the maturity of the component market and some available results
coming from academic research, CBSE remains, somehow, a backward
discipline, since no modern techniques for component composability have
been recognised as satisfactory. Indeed, even if components are coherent
software units that are in essence encapsulated, their combination is not

www.manaraa.com

straightforward: this has led to design practices that assume components are
compositional in all behaviours. This is obviously not true.

This book aims to complement other reputable books on CBSE, by
stressing how components are built for large-scale applications, within
dedicated development processes, for easy and direct combination and to
leverage high-confidence software systems. The book "Business Component
Based Software Engineering" emphasises these four facets and offers a
complete overview of some recent progress. Projects explained here are
intended to prompt graduate students, academics, software engineers, project
architects, managers and developers to adopt and to apply new component
development methods gained from and validated by the authors of this book
who are academics and professionals that shared their experience by "vorking
on the same projects.

In this context, the book recaptures and analyses the history, the CUlTent
situation and the challenges of CBSE based on the state of the art assessment
presented in chapter 1: What really are business components? Chapter 2
focuses on the KoBRA method for component development that customises
and adapts the concept of "model-driven design" of components. This extends
the OMG's idea of Model-Driven Architecture leading to pay attention and to
study architectures in which components are deployed.

Chapters 3, 6, 7, 8 and 13 give some new insights concerning tailored
software development processes and tools for component development.
Chapter 3 especially illustrates a proposition in the banking domain while the
other chapters treat the documentation issues, the human aspects (how teams
are organised in component development) as well as the relation between
component development and analysis/design methods, as well as requirements
engineering.

Another strong requirement for components is reliability. Although, they
may offer facilities to be connected with each other, components may fail as a
result of some misuse or by breaking some contract. Chapters 4,5,9, 11, and
14 supply innovative techniques in order to incorporate additional material in
components: this cOlTesponds to an increasing quality, and a way to test,
sometimes certify and surely improve, component composability. This also
enhances their flexibility to be deployed in unknown (at the development
time) target environments. A special interest for security-critical systems and
real-time systems is developed in chapters 10, 11, 12.

Pau, June 3, 2002

Franck Barbier

Vlll

www.manaraa.com

Chapter 1

Business Components

Franck Barbier and Colin Atkinson
LlUPPA, University of Pau, France; lESE, Germany

Abstract: Business components are software assets modeled within requirements
engineering and domain engineering activities, They embody business logic,
rules and constraints whose consistent grouping generates reusable,
compositional, highly abstract modules that are specific to a domain, Business
components therefore migrate through the software development cycle ~nd are
connected, via a continuum, with technical components that encapsulate
software facilities such as primary data structures, generic algorithms, common
services (e,g, dating, timing, graphics user interface, network communication,
data storage). The increasing demands on business components driven by the
goal of a component market require a new set of engineering practices. This
chapter looks at the types of engineering methods that are suitable for designing
business components. To this end, business components are carefully
characterized, distinguished from the other kinds of components, and finally
exemplified.

Key words: Software components, business engineering, component modeling, component
standards

1. INTRODUCTION

The idea of software components cannot really be regarded as new
because prominent books, such as that of Szyperski [1], have already
highlighted most of the technical features, issues, challenges and trends of
Component-Based Development (CBD). More generally, Component-Based
Software Engineering (CBSE) is recognized as a fully reviewed, and thus
mature, software technology [2J [3].

www.manaraa.com

2 Chapter 1

The number of component standards, environments/platforms, products
and development methods is currently in a stage of rapid growth,
demonstrating constant expectations concerning the component paradigm. In
particular, component-dedicated development methods, as for instance
Catalysis [4] or KobrA [5], have recently emerged to address the need for a
new set of engineering practices for CBD. This raises the specific and major
technical problem of dealing with external sources within the development
process. Due to the existence of Commercial Off The Shelf (COTS)
components, it is difficult to express the use and the integration of such
imported, predefined, even inflexible, software elements in specifications,
designs and implementations. The other major difficulty is linked to
deployment which raises distribution concerns which cannot be addressed in a
straightforward manner. Because components differ from objects, particularly
in their granularity, packaging objects into modules that are deployable calls
for some originality in both modeling and programming languages.

The need for a general-purpose and consensual formalism for components
is obvious. These may be COTS components or in-house components. These
may also be components that are close to user requirements concerns or to
more or less detailed implementations. Components can, in fact, vary on an
abstraction scale. In order to use and often customize well-known modeling
languages, such as the Unified Modeling Language [6], most authors have
proposed UML-centered development approaches [4] [7] [8] pp. 243-262 and
[5] for CBSE in all kinds of development contexts. In this chapter, we
deliberately stress the notion of business component, because assembling
business components from home-made or COTS components such as, for
instance, those based on the .NET plateform is inherently challenging. We
require a continuum in space and time to manage each varied dimension of
components. The business concerns, strongly linked to the applications
domains, are the driving concerns since they appear early and recurrently
among applications.

Modularizing business logic and, more generally, vertical application
domain assets for reuse is one thing, but respecting standards of design and
making business components operational is another. Moreover, smoothly
transforming business components into code and finally composing
component architectures by means of odd, multiple-source, multiple-shape
components is the hardest problem of all. All of these tasks (i.e. building
Enterprise Java Beans, CORBA components, .NET modules or whatever on a
day-to-day basis) are not yet widespread practices. In short, the observation
that the adoption of CBSE is slow, is supported by real-world experience and
economic surveys [2]. Easily comprehensible business components that are
familiar mental concepts to non-computer experts may thus help speed up the
adoption of CBD in industry.

www.manaraa.com

1. Business Components 3

This chapter aims to concretely discuss the business component concept,
showing and verifying that business components are, above all, true
components (i.e. reusable entities and are by definition compositional in all
situations). In addition, they are scalable, deployable in complex networking
infrastructures, and necessarily lead to the creation of predictable and
environment -flexible assemblies.

Unfortunately, however, there is an embarrassing contradiction in these
assertions. From a strict technical point of view, the separation of a
component's interface from its implementation certainly favors reusability.
However, considered as a syntactical emergent property, the overall interface
of a component does not guarantee the component's continued compliance
with and adaptation to its environment. In other words, hiding implementation
precludes an understanding of the component's fine-grained behavior. From
the system viewpoint, components have to be resilient to faults, for example,
and thus have to be designed for various environmental contexts. From the
business and user's side, however, components are subject to changes in
requirements that are difficult to foresee. Implementing domain logic in
software artifacts invariably makes it difficult to isolate "modules" that need
to be integrated in systems for which they were not originally constructed. For
instance, merging financial components that cope with legal issues of
different countries into one single application is a non-trivial task. Its
complexity depends on whether, for example, such components are endowed
with technical security management mechanisms, which could be
incompatible with the underlying networking security policy.

Thus we are faced with the great contradiction of trying to find a
conceptual model of software components that possesses all the desired
software engineering qualities (e.g. robustness, reusability, adaptability,
configurability), but can, at the same time, support complex domain
"intelligence". Because business components must be usable and scalable,
they are both units of decomposition (particularly at the time when they are
discovered) and composition. Designing business components is above all a
technique of rationale segmentation that occurs either early or concurrently
with regard to the software development cycle.

In this chapter, after offering a characterization of business components,
including adoption inhibitors, we list and analyze the interesting properties
that business components have to possess. We talk about their executability,
their qualification and adaptation, their seamless development and connection
with technical components and, of course, their reusability. At the end of the
chapter, we consider the example of the Currency business component from
the Object Management Group (OM G). Focusing on the use of UML during
the course of this chapter, we take the opportunity to suggest some
amendments for CBD.

www.manaraa.com

2. THE CONCEPT OF BUSINESS COMPONENTS: A
CHARACTERIZATION

The expressions "business object" or "business component" are admittedly
appealing but previous attempts to characterize these concepts [9] highlight
the lack of a common understanding. Business components, when regarded as
ordinary components, are preferably methodology-neutral or technology-free.
For example, within a vertical application domain such as healthcare we have
business components (formal descriptions, behavioral models, runtime forms,
etc.) insofar as we can identify abstractions that are reusable from one
application to another. Unfortunately, however, not all applications can easily
share the same modules. For example, applications can belong to different
corporate entities or distinct departments (e.g. two hospitals or two divisions
such as dental surgery and plastic surgery). Commonalties actually may exist
but they affect the area of health care according to very different ways.

The problem is that boundaries between domains are often unclear.
Consequently, it is difficult to establish the scope of a business component. In
other words, to what extent, does it gain the status of a modular software
artifact in a domain or sub-domain? Domain analysis with the objective of
discovering reusable elements is discussed in [10]. In this chapter, we restrict
the characterization of business components to well-known domains
described in standards or books. Standards favor consensus and convergence
by enabling the agreed delimitation of domains and thus the
factorization/formalization of significant components. As an illustration, the
General Ledger business component produced by the OMG [11] is based on
international accounting standards. The acknowledgement of such a standard
for European and American companies will probably allow the
interoperability of most of their respective accounting programs.

Standardization of business components has mostly occurred in relation to
the efforts of the OMG to develop CORBA and its associated CORBA
Component Model (CCM). Domain component specifications are nowadays
available at the OMG in the areas of healthcare, simulation, utility
management (covering water and energy management systems),
transportation, . life sciences research, manufacturing, finance,
telecommunications and electronic commerce, with sub-domains such as air
traffic control for example in the Transportation field (see:
http://www.omg.orgltechnology/documents/domain_spec_catalog.htm).

Other initiatives, not linked to a software standardization group like the
OMG but based on a collection of leading companies in a given market, also
exist. In the oil and gas industry (see: http://www.openspirit.com/) for
instance, a CORBA framework offers dedicated business components that are
usable through a unique component infrastructure.

www.manaraa.com

1. Business Components 5

Such convergence efforts do not have to hide the fact that business
components also exist outside recognized standards. The list of domains of
expertise under the authority of the OMG to define mature and broad vertical
application CORBA components is insufficient. Other interesting growing
fields have not yet been sufficiently investigated and stumble against the
problem of capturing key components within sub-domains. Educational
software components are one of the next promising market niches. In
particular, [12] categorize educational components in terms of their strong
cognitive characteristics compared to their weak computational power.
Educational business components are mental imitations of human learning
tasks as well as of synchronized teaching/learning activities.

Business components are therefore today very real!

2.1 Definition

A business component models and implements business logic, rules and
constraints that are typical, recurrent and comprehensive notions
characterizing a domain or business area. Within software engineering,
business components are key abstractions that are captured during the domain
engineering activity. They are software artifacts in the sense that they are not
part of reality but embody and represent recurrent invariants relevant to
requirements, particularly at the earliest phases of development. As such, they
are transformed into concrete code for the software development process in
order to acquire operational features, especially for the purpose of being
connected with more technical software components that embody the
underlying facilities and services within a software system.

2.1.1 A business component is a component

Szyperski noticed that "Components are for composition" [I] p. 3 which
invariably implies that talking about reusable components is a pleonasm. Any
implicit use of the word "component" instead of "part", "chunk", "piece" or
whatever, within the worldwide software engineering community, supposes
and imposes reusability [13]. However, incorporating components into
software architectures and frameworks shows that the reuse power of
components is handled with difficulty. As observed in [14], "However, this
has led to design practices that assume components are "compositional" in all
other behaviors: specifically, that they can be integrated and still operate the
same way in any environment. For many environments, this assumption does
not hold."

All of these statements necessarily apply to business components. As a
"traditional" component, a business component is a self-contained software
entity with well-defined interaction points facilitating the accessing and

www.manaraa.com

6 Chapter 1

execution of a coherent package of functionality. "Coherent" here means that
business logic, rules and constraints are separated into highly cohesive and
loosely coupled elements. For instance, a coarse-grained Enterprise Resource
Planning (ERP) business component has to be isolated and to encapsulate
discriminating functionality with respect to a Customer Relationship
Management (CRM) component. A high-level invoicing function within an
application may thus invoke both components, but based on communication
and data exchange between the two rather than on interrelating sub-functions.
In some circumstances, each must be deployable by third parties, ignoring the
other.

In general, the component concept can have both a runtime and a
development time incarnation [1], [5]. Component approaches cope with these
aspects in different ways. In the rest of this chapter, we use Szyperski's
explicit distinction between component (i.e. at the type level) and component
instance. This is depicted in Figure I in UML where the concept of
component, and its specialization business component is a kind of
"Classifier".

addition

Figure I. Component and business component concepts within the UML metamodel

2.1.2 Foundations of business components

Business components involve the juxtaposition of two software
technologies: that of Domain Engineering I Domain Analysis and that of
Component-Based Software Development I COTS Integration. These
technologies are carefully reviewed and synopsized at
http://www.sei.cmu.edu/str/descriptions/deda.html and
http://www.sei.cmu.edu/str/descriptions/cbsd.html. respectively.

Domain engineering refers to a single self-contained and self-consistent
software technology. It covers the process of defining the domain, analyzing
the domain, developing the domain architecture and building the components
for a class of multiple applications. Domain component engineering focuses
on designing domain assets for reuse [10] on a continuous development scale,

www.manaraa.com

1. Business Components 7

from a conceptual level (modeling) to an operational one (implementation,
deployment). Business components are artificial entities that embody, and
therefore imitate, any prominent distinctive knowledge and know-how within
a particular field (or a family of fields) of interest. Nevertheless, it is essential
not to restrict business components to models, as it is sometimes the case in
business engineering [15]. Business component specifications are seamlessly
refined into code and binary blocks for execution at runtime and thus appear
in multiple, inter-related forms. This happens during design activities
involving the combination of business components and technical components.
The latter's services are used for the implementation of the business
components' services.

The foundations of business components do not originate solely from
object orientation but the similarities are numerous. This section aims to add
some definitional elements on, in particular, the difference between objects
and components in their business guise. However, the strict difference
between components and objects remains somehow "shaky" in the literature.
Neither the UML [6] pp. 3-170-3-178 nor Szyperski really clarify a formal
distinction.

Object-oriented programming (or modeling) provides one foundation for
component programming (or modeling) - but not the only one. A business
component is a server of a limited set of object types. Within a business
component specification, several object types are defined that are either
internal (used for internal computation) or external (intended for the use of
clients). In the latter case, they participate in the signatures of the operations
making up an interface of a business component. The entry point of a business
component is often implemented through an object type or class. Well
identified "provided" and "required" interfaces facilitate the neat isolation of
a business component's "micro-architecture" requiring at best the definition
of a small number of object types.

Instances of object types at runtime augment functionality while instances
of business components enhance quality of service. A business component
instance is deployed once and is a priori unique in a component framework.
In the domain of manufacturing, for instance, a Data Acquisition (from
industrial control processes) business component instance is not duplicated:
all the desired operations are present in the application using it. In contrast,
objects of the same type that have their own state and represent physical
entities on the supervised processes are replicated according to functional and
behavioral constraints at runtime.

2.2 Characterizations by other authors

In [8] p. 83, Williams introduces the notion of "domain components" as
"Domain components are what most developers think of when they talk about

www.manaraa.com

8 Chapter 1

business components. They are reusable or not. C ...) For example, the domain
components in an insurance application could include Bill, Policy, and Claim
components." He especially distinguishes "Domain components" from
"Service components" and "GUI components" by means of a cost/complexity
scale. The complexity and development cost of domain components are
higher.

In the same book [8] p. 286, Carey and Carlson describe the concept of
business component as follows: "A business component is a software
component that provides functions in a business domain. C ...) for example, an
order management application is part of the Enterprise Resource Planning
(ERP) business domain." They insist on the difference between fine-grained
and coarse-grained components and mainly discuss the development of
coarse-grained components based on other coarse-grained components and,
according to their rationale, on fine-grained components that are similar to
classes in programming languages. Although UML is used as the component
modeling language, Component Diagrams are noted used; instead Class
Diagrams are used as a substitute.

Older contributions, such as that of Fowler [16] do not exactly use the
term "component" but, apart from this terminology subtlety, the idea of
business component is easy to see: "Analysis patterns are groups of concepts
that represent a common construction in business modeling." [16] p. 8. Since
the key power, of business components is reusability and analysis patterns
possess this power they are candidates, at implementation time, to become
components. Fowler provides many examples of reusable business entities
and, in addition, gives some implementation hints for three-tier architectures
based on the concept of "support patterns".

Finally, Kilov in [15] pp. l31-189 evokes "business patterns" in discussing
business-specific and business-generic patterns. He also called these:
"common business components".

Fowler and Kilov implicitly view business components as conceptual
entities compared to software (i.e. runtime) entities. More practical
characterizations such as those of the OMG mentioned above are
implementation-oriented since they are specified by means of the Interface
Description Language (IDL) that directly maps to programming languages.

2.3 Non-business components

A recurring problem in science, particularly in software engineering, is
categorization. Viewing things as discrete systems often preclude the
characterization of relative and continuous concepts. Hence, a possible way to
define what business components are, is to supply examples of what they are
not. This may be helpful whether or not we consider the boundary between
business components and non-business components to be clear and sharp

www.manaraa.com

1. Business Components 9

(Figure 2, left-hand side). Unfortunately, this is not justified in reality because
the concept of business component is interpretation-prone (Figure 2, right
hand side). On the right-hand side of Figure 2, business components play
roles with respect to a given domain: they therefore become software
archetypes for that domain.

archetype

Figure 2. Two possible extensions of the UML metamodel enhancing the notion of

business component

Business components that are accessed from several domains tend to lose
their domain-centric features! The most interesting illustration of this is
Fowler's "Observations and Measurements" analysis pattern [16] pp. 35-55.
He specifies dedicated business object types such as Phenomenon, Unit,
Quantity, Measurement, Observation that collaborate together and operate, for
instance, in such domains as healthcare (patient care recording and analysis).
Such components may also apply for network management (quality of service
recording and analysis, for example) and are probably useful in other domains
(e.g. measurement engineering in mechanics).

The extreme case of a non-business component is a timing service
including dating operations. This is known to be universal - and therefore
may be regarded as a non-business component. As an illustration, a general
purpose Time Service component is offered in the Time Service Specification
[17] that comprises a Timer Event Service sub-component. The Time Service
component appears on the bottom of Figure 3 (left-hand side) with its
provided interface. It also appears on the top of Figure 3 (left-hand side) with
the Timer Event Service SUb-component which is depicted as part of the
overall provided inteTface.

www.manaraa.com

10

Application requirement
customization and parameterization

Timer EVl'llt
. 'crvicc intcrfucc

g Air
Traffic
Control

Chapter 1

,---_---,>Transportation

Finance

NanpS(X;ond

)

J--=====-___ +-______ -+::::::===~~Subdomain-Universalitv ...
compliance

Business-generic Business-specific

Figure 3. Continuity relating to the lowlhigh business nature of components

In Figure 3, components may be qualified as "business" to the extent that
they are positioned towards the right-hand side. Based on its cross-domain
nature, the "Observations and Measurements" business component is,
however, on the left-hand side of this figure. An interesting point is the
application-based specialization of a component such as Time Service. In a
real-time program for instance, only a subpart of its functionality is required.
Hence, the customization of the Time Service component on the top of Figure
3 (left-hand side) occurs via a limited use of the provided interface, namely
the Timer Event Service sub-component. At runtime, this may give rise to a
reduction of the required resource.

A significant issue is also the specialization for a domain. The same Time
Service component gains business features when it owns a configuration
interface in order to support nanosecond precision (right-hand side, bottom of
Figure 3). For example, nuclear process control applications compulsorily
have such a requirement, which is often superfluous in other domains. The
key idea linked to a configuration interface is that it controls the adaptation of
a component to its environment. Nanosecond calculations cannot be
supported a priori in signature declarations and, above all, in implementations
as a consequence of high overheads. In contrast, a general-purpose Time
Service component may exhibit such business characteristics, if required,
through reconfiguration.

www.manaraa.com

1. Business Components 11

The boundary between business and non-business components is thus a
fuzzy one. Even though domain and component taxonomies bring clarity and
comprehensibility, this does not prevent business component from being
tailored according to specific contexts.

2.4 Brakes and barriers

Although the notion of business component cannot be ignored, one has to
be aware of factors that may obstruct the dissemination, and thus the use of,
business components. In this context, people and country norms, habits,
cultures, laws and legal issues in general, are all major forces on the nature of
business software systems.

Obviously, internationalization of standards is a must for business
component development. As an illustration, the OMG Air Traffic Control
component [18] is based on such a premise. For security reasons, in the
domain of air transportation there are many formal technical agreements that
help the specification, design and implementation of such a normalized
software subsystem. This is, however, not so easy in other areas (e.g.
Education [12]), especially when business practices are ill-formalized.
Standardization for vertical application components is said to be "not so hard"
by Szyperski in [1] p. 38 because markets are narrow and involve few
stakeholders. This, however, deserves further analysis.

Beyond the existence of software standards, the creation of business
objects assume that domain standards exist. For instance, in the field of
Customer Relationship Management (CRM), call/contact center applications
may need voice infrastructure (e.g. telephony application programming
interface) and dedicated software components. Standardization is trickier
here. Local constraints may appear: spoken languages are odd and varied,
recording conversations may be forbidden by law in given countries, etc. This
raises the need for a high degree of parameterization in order to organize
components with respect to such non-functional requirements.

Next, from a strict economical point of view, standards may preclude
business competition by providing no way for software component vendors to
increase the value of their own components and thus to improve their business
advantage. In addition, standards are forever changing, if not dying! In [2],
consumers complain about the instability of component standards, regarding
them as the main inhibitor of CBD success. From the purchaser's side,
investment security is linked to widely agreed standards that evolve carefully
and often slowly. However, this does not seem to be the current situation in
the software world. From the seller's side, rigidity, uniformity and strong
dependency upon norms may be the risk for business components.
Attractiveness not only resides in reusability and conformance to standards;
providers also have to maximize the trustworthiness, context tuning,

www.manaraa.com

12 Chapter 1

verification/validation (testing) capabilities of their COTS business
components. This imposes design-specific rules for such software entities that
are discussed in the third section of this chapter.

Stable properties of business components are expected by consumers.
These have to be connected with domain standards, if they exist, and with
well-known reputable industry-consensual software tools (XML, Java,
CORBA, .NET). Significant flexibility is also required for business
components which may be split into the following concerns:

Genericity: which implies that business components have to be highly
parameterized;
Configurability: which means a strong degree of adaptability;
Predictability: which involves anticipating, measuring, assessing and
mastering component assembly behaviors;

- Scalability: component engineering practices, which provide a uniform
way of reasoning about components independently of their granularity.

3. COROLLARY FEATURES FOR BUSINESS
COMPONENTS

The business properties of a component may be subject to varied
interpretation due to its broad spectrum and differing business practices. As
indicated at the beginning of this chapter, the idea of a COTS business
component is problematic. In most traditional software development cultures,
external parts in software are only service components, e.g. a relational or an
object database engine, a Java package to access a middleware platform, a set
of windowing classes or a security policy module. The day-to-day business
logic, rules and constraints are typically encapsulated within in-house parts
that connect with a common technical tool kit. There are, in fact, many risks
involved in outsourcing predefined business components that have been
constructed without considering how to match them to the contexts in which
they are usable.

Component users are naturally reluctant to incorporate software parts into
their products that fulfil domain demands but ignore application-specific
concerns. Although this observation applies for non-business components as
well, these allow the development of general purpose software components.
Competing end user business applications may thus be too similar since they
share a lot of business basis modules that have been supplied from the same
source. Beyond this problem, application quality depends upon reused
components. For business components, this can be embarrassing in the sense
that the quality impression (e.g. usability) gained by end users is based on
business component quality of service. Technical components that are buried

www.manaraa.com

1. Business Components 13

in applications have a lower impact on the end users' impression of business
delivery.

3.1 Semantic contract versus syntactical interoperability

In this section, we discuss the paradox that makes business components
general enough to be usable in a wide variety of contexts but, at the same
time, domain-compliant and even business-specific. In particular, we compare
and contrast the benefits of standards in proposing general-purpose design
rules for business components.

Heiler notices in [19] that "Interoperability among components of large
scale distributed systems is the ability to exchange services and data with
another." Component interfaces are the basic foundation for this ability which
can be viewed as ensuring the syntactical compatibility of components.
However, syntactic compatibility does not ensure that the provided and
required interfaces of two different components match in the semantic sense,
nor that their full range of mutual collaboration possibilities are attained. For
this reason, Heiler also outlines that: "Semantic interoperability ensures that
these exchanges make sense - that the requester and the provider have a
common understanding of "the meanings" of the requested services and data."
In other words, components must consistently interact with each other in the
achievement of some well-defined higher-level computation. For this reason,
many research projects on composability stress the "design by contract" idea
of Meyer [20]. Composability means that potential client/server interaction
are in semantics-compliance and, thus, do not just agree on the nature of the
operations' signatures in the provided and required interfaces.

The contract mechanism, which is most fully developed in Eiffel, is not,
however, easily generalizable for components. For example, typical
representations of components using IDL only give syntactical entry points,
namely the signatures of the interface's operations. This is obviously
insufficient because business components such as the Air Traffic Control
component [18] or the Currency component [21] are not easy to understand.
They are documented in IDL with additional UML diagrams (sequence
diagrams in particular for the Currency component). Unfortunately, even in
UML, much progress has to be made to attain a complete component
modeling language (see below). Basically, there is no rigorous way to express
the semantic interoperability of components, except, maybe, through the use
of the Object Constraint Language (OCL) in UML component specifications.
This approach has not yet been sufficiently explored, however.

A crucial need for fully supporting the specification contracts is to be able
to describe in what contexts executing the components will be safe and will
lead to the expected behaviors and results. In general, this challenging

www.manaraa.com

14 Chapter 1

requirement covers the predictability and comprehensibility of component
assembly behaviors.

I Client I
I
I
I
I
I

Business component
provided

Server provided

on nt
service{) : ResultType

I

\Jj
«interface»)

Business component
required

Server

Deployment
management

I
I

Business component

I
I

configuration
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I

Server configuration

Figure 4. Business component canonical organization

As an illustration, Figure 4 proposes a minimal collaboration architecture
for business components. A business component possesses a provided and a
configuration interface (two top circles) and is dependent upon a required
business component interface (as depicted in Figure 4) as a logical entity
owning the "«interface»" UML stereotype. Contracts may therefore, for
example, be statically formalized in OCL as follows:

Context Business component::business component provided::service() : ResultType
pre: - a priori conditions
post: - a posteriori conditions

The same kinds of constraints must also be developed in conjunction with
behavioral specifications. This concerns the problem of the Currency
component discussed above. Sequence diagrams document the use context of
the Currency component, but no constraints to state how and why the next
step in the scenario may apply, what the exact object instances exchanged are
and what the logical states of the component are, etc.

3.2 Business components appropriation

Acquiring business components is not trivial. The trustworthiness of
COTS business components can only be guaranteed under certain

www.manaraa.com

I. Business Components 15

circumstances. First, components that may be eligible must be appraised with
regard to some given application requirements. This is the process of
component qualification. Domain functionality offered by a candidate
business component has to be validated, possibly even certified, by a
recognized authority that requires the satisfaction of strict target criteria. For
instance, business components supporting military or legal obligations must
be carefully assessed. Next, component adaptation refers to the measurement
and the realization of moderate tailoring changes to the acquired components.
This covers the idea of flexibility evoked above. Quality of service (security,
response delivery, robustness, etc.) has to be analyzed for components
assembled into application architectures and component frameworks.
Business components are built on top of more technical software components
whose implementation may affect runtime resources. In this regard,
performance corresponds to another important quality of service concern.

There are thus two angles to the process of appropriation. Components
must first be qualified according to whether they are business-compliant.
Through emergent well-formalized properties, the embedded business logic,
rules and constraints in components must be fully understandable. Secondly,
their implementation on sound and available underlying service components
must be established. This involves the definition of how the values of business
component parameters may ensure the satisfactory integration in an
application architecture and/or component framework. For instance, a
business component encapsulating basic manufacturing process control
algorithms may have a parameter for setting up the memory management
policy with a possible default value. A specific memory management sub
component may be a justified substitution for this default because the
component's deployment node is an operating system with hard memory
constraints. This may be sketched in C++ as follows:

template<c1ass Technical_ componentyarameter, class Memory_manager
Default_memory _ manager<Technical_ componentyarameter> > class
Manufacturingyrocess _ control_basic _algorithms { ... };

In the code above, the possible late binding of an appropriate memory
management service component demonstrates where the openness, and
therefore the flexibility, exists. The default "Default_memory _manager"
technical component may be replaced as a means of customizing the
implementation of the wrapping business component named
"Manufacturing-'process _ control_basic _algorithms".

More generally, the business acceptance of components cannot just depend
upon standards. Standards are necessary but not sufficient. Because business
components are conceptual software artifacts, they must possess cognitive
properties that enhance their understandability. In this respect, an orthogonal
solution to standards is component executability. In this regard, we first quote
a remark by Houston and Norris relating to UML in [8] p. 261: "For the area

www.manaraa.com

16 Chapter 1

of CBSE the most exciting initiative is the proposed introduction of action
semantics. The objective of this proposal is to provide a mechanism to express
the executable semantics of UML model elements in an implementation
independent fashion." Next, recalling that domain engineering is a foundation
of business components, we point out another key observation in [14] p. 16
(our italics): "Domain engineering is a largely informal, often ad hoc, process.
Furthermore, little direct use or reuse is made of domain information in
downstream tools. Potentially useful engineering models are often put on the
shelf after design and are not employed during software and systems
engineering. Models that could support both informative simulation and proof
are inadequately explored."

Executability brings component specifications to life through simulation.
This imposes the use of a rigorous component modeling language, such as the
UML enhanced with action semantics for example. Figure 5 shows a possible
way of explicitly formalizing the component intra-computation and intra
concurrency (dashed lines) in UML using Statechart Diagrams. Figure 6
offers an alternative view of the same component specification that limits the
understanding on how contained (<<reside» relationship) sub-components (Sl,
S2 and S3 in Figure 5) act in specific contexts. In particular, sub-components
may be technical components that document what is the required interface of
the overall business component. Figure 5 (bottom, right-hand side) gives
functioning scenarios that raise the level of information, and thus ultimately
confidence. Such animated specification is rather difficult in the model of
Figure 6.

The key idea is that the interfaces of business components must be
captured based on an event-driven approach. This means that internal
operations (w, x, y, z and data acquisition in Figure 5) are delegated to sub
components. In addition, received events should be represented as operations
in the interfaces.

www.manaraa.com

1. Business Components

o
event a

so
I
I
I
I
I
I
I
I
I
I
I

~ __ --,S,;z,.2"---__ -j event e G

eventc: ~
"--------'--.v ___ :- event d ~ event f ++-.:;;.!
~------- I

S3
dol data acquisition

I
I
I
I
I
I
I
I
I
I
I
I

Possible scenarios:
Sil/\ event b ---) x acri\ated 1\ Sl2
S!!l\eventc -~xactivated/'SJ2
S11 f\ e,-ent d ----}> (no activation) Sil
S II /, event e -~ x activated 1\ quit
S 1 J /\ event f /\ S21 -» x activated 1\ quit
S11 1\ event f 1\ S22 ~ (no activation) Sit
S 11 1\ even! g ---c\o (no activation) S 11

Figure 5. An event/state-driven UML executable component specification

event a «Business component»
Manufacturing process control basic algorithms

~~tc-r--I-________________ ~

event d

event {'

1 «reside»
I
I

Figure 6. A UML common component specification compacting Figure 5

17

Coupling our recommendations of how to use UML for business
components with a component Architecture Description Language or ADL
[22] that supports executability, is an interesting challenge. The combination
of executable modular representations such as those in Figure 5 would then be
formally defined and based on strict guidelines. Compared to an ADL, UML
remains too informal.

www.manaraa.com

18 Chapter 1

3.3 Effective measurable reusability

Business components should have an appearance that is suitable for
expressing reusability in general, and composability in particular.
Components can be described by means of UML (which is nowadays the
most common approach) or by a formal specification language as B, VDM or
Z, or by means of implementation-neutral languages such as IDL or XML
(eXtended Markup Language). There is, however, no special modeling
notation/syntax within component modeling languages to make the
component's potential for reuse clear. In other words, connectors which state
how reuse is expected to occur are missing. In this respect, the ADLs
mentioned above are more prescriptive than descriptive, and thus propose
constructions that address issues of component combination.

Major challenges relate to the improvement of the formal semantic
definition of component relationships. The KobrA method [5], for instance,
invented component-specific relationships (composition, clientship,
ownership and containment). This also involves the clear characterization of
interaction variations induced by each kind of relationship (see Section 3.2
about assembly executability).

Reusability thus becomes realizable based on whether one knows how
easily and quickly a component may be integrated into a component
framework or an application architecture. Other important issues are the strict
isolation of sub-components that essentially play the role of removable parts.
Sub-components differ from components in the sense that they are not
independently deployable as such. The greatest quality of sub-components is,
in fact, that they are interchangeable. From the perspective of the business
application layer, sub-components embody a rational splitting of business
components. For instance, a monolithic accounting macro-component may
awkwardly mix domain-generic and domain-specific sub-components. In this
example, an improvement would involve isolating in one component very
special calculation demands (business-specific) and in the other the
fulfillment of statutory accounting conditions (business-generic).

From the perspective of the underlying technical application layer, sub
components are involved in the required interfaces of business components.
Having access to sub-components, and possibly exchanging them with ease,
provides the highest degree of composability, and thus flexibility, of the
business components in which they are incorporated.

3.4 A seamless transformation for business components
within the software development process

Considering the evolution of business components across the software
development life cycle, it becomes clear that business components have

www.manaraa.com

1. Business Components 19

multiple facets. From being purely conceptual entities, they are transformed
into purely operational entities. To transform models of business components
into runtime entities, we have to deal with different formalisms and preferably
use canonical component models, such as, for instance, CCM or EJB. Figure
7 shows in UML how an EJB component is organized with a special
distinction between Entity Beans and Session Beans as well as their subtypes.

«interface»
EJB Home

EJB

""",,,~"'--""'-!!.!!J Session Bean

Figure 7. EJB pattern

Figure 8 shows the use of this pattern for a network component in the area
of Telecommunication Network Management. Figure 8 sketches a pre
implementation state but supplies no assurance about property preservation
from modeling to implementation, even deployment and execution.

I WDMSectionAlarmlmplementation
1

«interface»
WDMSectionAlarmHome 1

WDMSectionAlarmPrimaryKey

Figure 8. A "Wavelength-Division-Multiplexing Section Alann" entity bean in the domain

of Telecommunication Network Management

The key problem here is the risk of traceability disconnects in the
component transformation. We have mentioned an XML variant as a possible
expression language for components. Beyond a component modeling
language, components have to be stored, retrieved, shared and exchanged in
large information systems on the Internet in order to really create a
component marketplace. Although IDL, UML, ADLs and even mathematical
formalisms can be used to model components, a common background

www.manaraa.com

20 Chapter 1

expression language is needed. Since business components may be available
in various forms (even binary forms) that address different development
activity activities, it is necessary to manage their evolution/transformation
consistently.

4. EXAMPLE: THE OMG CURRENCY BUSINESS
COMPONENT

The OMG Currency business component is specified by means of IDL in
[21]. Because of the IDL's lack of expressive power, UML Class and
Sequence Diagrams are also used to improve its comprehensibility. Curiously,
Component and Deployment diagrams are not used although they are suitable
for the purpose. We thus take advantage of this example to criticize/enhance
the design of component in UML by applying its dedicated component
modeling constructions.

"A component represents a modular, deployable, and replaceable part of a
system that encapsulates implementation and exposes a set of interfaces." [6]
p. 2-31. Based on this definition, UML provides specific notational elements
for Component (Figure 6) and Deployment diagrams. We first present more
details on these two kinds of diagrams (known collectively in UML as
"implementation" diagrams). We then show how these can be used to
improve the UML-based specification of business components such as
Currency.

4.1 Notation

A key visual characteristic of a component is the presence of two small
rectangles protruding Ji'om the larger rectangle which symbolizes the
component. What· is the semantics of these two small rectangles? This is
unclear in UML. Thus, components physically contain parts (either drawn
inside or linked by means of the «reside» relationship: see Figure 6) that
cannot be executed alone (i.e. that are dependent software units of execution),
and thus are not independently deployable. This seems implicit in the UML,
but our advice is to distinguish component parts by simply avoiding the use of
the two small rectangles protruding Ji'om the larger rectangle (as done in
Figure 6 or in Figure 9). This obviously does not prevent component parts
from having interfaces and leads to models such as that in Figure 9.

www.manaraa.com

1. Business Components

DDecimalFactory

DAmountOffimeFactory

DTimeFactory

«OMG IDL module»
CBO subset for Currency

«OMG IDL value type»
DDecimal

«OMG IDL value type»
DAmountOITime

«OMG IDL value type»
DTime

21

Figure 9. A component part (i.e. an OMG IDL module) itself comprising three parts (i.e.

three OMG IDL value types)

In Figure 9, a circle with no name embodies the overall interface of a
component part, namely the "DDecimal", "DAmountOfTime" and "DTime"
object types. Alternatively, several circles split the overall interface into
logical subinterfaces whose name is for documenting purposes. The "CBO
subset for Currency" sub-component ("CBO" meaning "Common Business
Object") is a restricted view of the OMG CBO entire component, and is a unit
of deployment in CORBA. Since the Currency business component only uses
a small subset, this one is concisely depicted in Figure 9. Note that UML has
no systematic mechanisms for providing different views on components.

4.2 Detailed view

A component in the OMG IDL approach is a set of modules, each made up
of value types and interfaces. An IDL component specification may thus be
viewed as an autonomous software element in the sense that it has to be
implemented, it is deployed once and is unique in a component framework. In
this respect, the two other modules of Currency are "FbcCurrency" and
"CboCurrency" (Figure 10). Logically, Currency in Figure 10 is equipped
with two extra small rectangles on the left side, in order to illustrate that it is
not a part of something but a unit of deployment.

www.manaraa.com

22

«OMG business component»
Currency

«OMG IDL module»
CRO subset for Currency

«OMG IDL module»
FbcCurency

«OMG IDL module»
CboCurrency

Figure 10. Cunency business component general overview

Chapter 1

IDL modules organize the overall set of operations supported by a
business component, namely the functions that support business logic, in
loosely coupled parts. Applying this concept recursively, we arrive at Figure
11 that is the inner part of "FbcCurrency". We are seriously hindered by the
vagueness of the UML dependency relationship (dashed arrow in Figure 11)
which does facilitate an explanation of how the object types may interact. The
scenario used in [21] pp. 2-23-2-24 partially compensate for the lack of
modeling constructs. For instance, any access to a Currency object supposes a
Currency book interface, which itself therefore needs to have information on
Currency's clients. The StateldManager interface in Figure 11 determines
identities for clients that are taken into account by Currency. For instance, this
is needed in order to cope with client states. By definition, this pattern of
functioning cannot be ignored in any interaction. It therefore requires a
sophisticated self-contained component formalism that supports, amongst
other things, exception description, conditions/constraints on event
emission/reception/processing, component state representation. Mixing
several UML diagram types is not as satisfactory as having a dedicated
language.

~(OMG IDL interface)}
StateldManager

Figure 11. The FbcCunency sub-component and its intra-coupling

www.manaraa.com

I. Business Components 23

The component formalism in UML is not self-sufficient, and thus is
deliberately not used in [21]. Despite these difficulties, the model in Figure 12
is an attempt to synthesize the overall Currency business component. Arrows
can end on circles to indicate the use of operations or directly on sub
component rectangles to indicate that they are "used" only for value types.
For instance, the Currency interface inside "Cbo Currency" uses the Currency
value type inside "Fbc Currency", itself utilizing "DDecimal" and "DTime"
inside "CBO subset for Currency". As outlined by Heiler in Section 3.l, the
exact meanings of these exchanges are difficult to understand.

«OMG IDL module»
CboCurrency

«OMG IDL interface»
Currency

«OMG IDL value type»
DMone)'

«OMG IDL \'aiue type»
DExchangeRateBased

~~OMG IDL interface»
Currency Factory

«OMG IDL interface»)
DMoneyFactoQ'

«OMG IDL interface)
O[:uhalll!"Ratcilallt'd.'aeto!,)-

«OMG IDL module»
FbcCurrency

(cOMG IDL interface»
StateldManager

«OMG JDL interface})
CurrencyBook

«OMG IDL interface»
ExchangeRateManager

«OMG IDL interface»
l\1oneyCalculator

(cOMG IDL interlace»
MoneyFormatter

«OMG IDL value type» ---- ... , ...

Currenc~' -___',

«OMG IDL value type»
Money

........... _\
\',

\ \
\ \
\ \
\ \
\ \
\ \ «OMG IDL value type»

ExchangeRate ==--=::::::::-... \ \
L-========~ \ \

"''''\ '\-, \

DDecimalFactot)'

«OMG IDL module»
CBO subset for Currency

\. \ '\

\ \ " \ \ \,
\' I,
\1 \ I
\1 "
II "

II '. II II
II "
/1 J ,

/)' /
I~ 1 I

> '/ . '/
«OMG IDL value type» I ,l

DDecimal /:
DAmountOITimeFactory

/ ,
/ ,

«OMG IDL value type» /,'
DTimeFactory DAmountOffime / /

'-:=========~ / I r ~,/
«OMG IDL value type»

DTime

Figure 12. Detailed view of Currency

www.manaraa.com

24 Chapter 1

Intuitiveness of the fonnalism in Figures 9, 10 and 12 cannot be
considered as satisfactory. Namely, schemata are more static than dynamic.
The only way to improve understanding is to use additional diagrams whose
overlapping with Component Diagrams may be important (Class Diagrams
especially). A future step about a true component modeling language in UML
is thus required.

5. CONCLUSION

The survey in [2] p. 26 reports that (our italics): "To date, the success of
component technology in satisfying the demand for software generated by the
IT revolution hinges largely on the ability of components to support domain
specific software reuse." This confinns the great importance and expected
development of business components in the near future.

In this chapter, one of our main observations is that standardization alone
cannot be viewed as the panacea for business components. Certainly,
standards create confidence but they are not yet sufficiently stable. It is clear
that most the business components existing today came out of the CORBA
world (Currency, General Ledger, Air Traffic Control, etc.). However, as long
as third-party certification does not occur, it is difficult to ensure that these
components or other nonnalized ones will fulfil conditions linked to legal,
security or other demands. Considering the goal for a more open free
component market, in this chapter we evaluated the discriminating features
that business components have to possess compared to non-business
components. Making a distinction between the two types is tricky but
nevertheless worthwhile. Our analysis highlights a continuity from business
neutral through business-specific to business-generic components. Business
components have thus to offer domain customization capabilities. We
therefore recognized the need for configuration interfaces amongst other
things help in the substitution of technical components, leading to
implementation variations that adapt business components to precise runtime
contexts. We also noted the fundamental need for a true component modeling
language, beyond IDL or UML that really allows all facets of CBD to be
addressed. Semantic interoperability for anticipating, even predicting,
assembly behaviors is crucial. Supporting the animation of specification in
order to overcome the hesitancy of users in reusing components could be even
more helpful in the long tenn. Finally, supporting and prescribing limited but
accurate reuse techniques within a component modeling language must be a
priority.

www.manaraa.com

1. Business Components 25

ACKNOWLEDGMENTS

We wish to thank Brian Henderson-Sellers for his (always beneficial)
reVIew.

REFERENCES

[I] C. Szyperski, Component Software - Beyond Object-Oriented Programming, Addison
Wesley, 1998.

[2] L. Bass, C. Buhman, S. Comella-Dorda, F. Long, J. Robert, R. Seacord, K. Wallnau Volume
I: Market Assessment of Component-Based Software Engineering, Carnegie Mellon
University, Software Engineering Institute, TECHNICAL REPORT CMU/SEI-2000-TR-
008, ESC-TR-2000-007, May 2000.

[3] F. Bachman, L. Bass, C. Buhman, S. Comella-Dorda, F. Long, J. Robert, R. Seacord, K.
Wallnau, Volume II: Technical Concepts of Component-Based Software Engineering,
Carnegie Mellon University, Software Engineering Institute, TECHNICAL REPORT
CMU/SEI-2000-TR-008, ESC-TR-2000-007, May 2000.

[4] D. D'Souza, A. Cameron Wills, Objects, Component and Frameworks with UML, The
Catalysis Approach, Addison-Wesley, 1999.

[5] C. Atkinson, 1. Bayer, C. Bunse, E. Kamsties, O. Laitcnberger, R. Laqua, D. Muthig, B.
Peach, 1. Wust, J. Zettel, Component-Based Product Line Engineering with UML, Addison
Wesley, 2002.

[6] Object Management Group, OMG Unified Modeling Language Specification, Version 1,4,
September 2001.

[7] J. Cheesman, J. Daniels, UML Components: A Simple Process for Specifying Component
Based Software, Addison-Wesley, 2001.

[8] G. Heineman, W. Councill, Component-Based Software Engineering: Putting the Pieces
Together, Addison-Wesley, 2001.

[9] O. Sims, Business Objects - Delivering Cooperative Objects for Client-Server, McGraw
Hill, 1994.

[10] S. Wartik, R. Prieto-Diaz, Criteria for Comparing Reuse-Oriented Domain Analysis
Approaches, International Journal of Software Engineering and Knowledge Engineering,
2(3), pp. 403-431, 1992.

[II] Object Management Group, General Ledger Specification, Version 1.0, February 200 I.
[12] J. Roschellc, C. DiGiano, M. Koutlis, A. Repenning, 1. Phillips, N. Jackiw, D. Suthers,

Developing Educational Software Components, IEEE Computer, IEEE Computer Society
Press, September 1999.

[13] B. Meyer, Reusable Software - The Base Object-Oriented Component Libraries, Prentice
Hall, 1994.

[14] National Coordination Office for Information Technology Research and Development,
HIGH CONFIDENCE SOFTWARE AND SYSTEMS RESEARCH NEEDS, January 2001.

[IS] H. Kilov, Business Specifications - The Key to Successful Software Engineering, Prentice
Hall, 1999.

[16] M. Fowler, Analysis Patterns - Reusable Object Models, Addison-Wesley, 1997.
[17] Object Management Group, Time Service Specification, Version 1.0, May 2000.
[18] Object Management Group, Air Traffic Control Specification, Version 1.0, May 2000.
[19] S. Heiler, Semantic Interoperability, ACM Computing Surveys, ACM Press, 27(2), pp.

271-279, 1995.

www.manaraa.com

26 Chapter 1

[20] B. Meyer, Object-Oriented Software Construction, Prentice Hall, Second Edition, 1997.
[21] Object Management Group, Currency Specification, Version 1.0, June 2000.
[22] N. Medvidovic, R. Taylor, A Classification and Comparison Frameworkfor Software

Architecture Description Languages, IEEE Transactions on Software Engineering, IEEE
Computer Society Press, 26(I), pp. 70-93, 2000.

www.manaraa.com

Chapter 2

Model Driven, Component-Based Development

Colin Atkinson and Hans-Gerhard GroB
lESE, Germany

Abstract: As complex behavioral abstractions, business components in many ways can be
viewed as (sub)systems in their own right, and thus need to be treated as such,
In particular, techniques are needed that enable the properties, requirements and
architectures of business components to be modeled in the early analysis and
design phases of software development. UML component diagrams are useful
for describing the physical components from which executing systems can be
deployed but are totally inadequate for describing the rich behavior and
relationships of business components. This chapter addresses this need by
describing a practical, systematic technique for modeling business components
and the systems assembled from them. The chapter starts by describing the basic
modeling artifacts used to model components, and illustrates their applications
in the context ofa small case study. It then goes on to discuss advanced
modeling concepts needed to support the hierarchical nesting of components.

Key words: Component modeling, model-driven architecture (MDA), component-based
development, analysis, design

1. INTRODUCTION

As the key logical building blocks from which software systems will be
assembled, business components are of importance right from the early
requirements analysis and design phases of the software life-cycle. However,
the current generation of component technologies, such as EJBIJ2EE, .NET
and CORBA, focus primarily on the implementation and deployment phases
of development, and provide little support for components earlier in the
development process. With the continued uptake of the UML [1], and the
OMG's emphasis on the Model Driven Architecture [2], providing practical
support for the development and application of business components implies

www.manaraa.com

28 Chapter 2

the need for a systematic technique for usmg the UML to model their
properties, relationships and interactions.

At first sight it might appear that UML component and deployment
diagrams are suitable for this purpose, since their stated goal is to model
component types and their deployment on a network of computers. However,
this is far from being the case. UML component and implementation diagrams
are very much aimed at capturing the implementation-level properties of
physical components such as EJBs and .NET components, and lack the
expressive power needed to capture the rich behavior of business components.
In fact, large business components can essentially be regarded as systems in
their own right with all the associated complexity of behavior and
functionality. Using the UML to model such components therefore involves
the deployment of multiple, intertwined diagram types each providing a view
onto a different aspect of the component's characteristics.

In the last few years several new methods have been published to address
this problem by supporting the analysis and design of component-based
systems. The most prominent of these include the SELECT Perspective [3],
Catalysis [4] and UML Components [5]. However, while these methods have
undoubtedly made a significant contribution to the state of the art, they focus
primarily on the specification of business components, and pay relatively little
attention to the UML-based representation of their realizations. Moreover,
although they all recognize the value of the hierarchic nesting of components,
they give little insight into how this should be achieved in terms of inter
related UML models. This is a problem because organizing a system in terms
of recursively nested components is one of the key concepts distinguishing the
component paradigm from other development approaches. It is also an
important theme in the OMG's Enterprise Distributed Object Computing
(EDOC) [6] profile which standardizes business component modeling ideas.

As well as supporting the specification of components, therefore, a
comprehensive method for documenting component-based, model driven
architectures must also provide an approach for modeling their
architectures/designs, and for organizing all the models of a component
hierarchically to reflect the system's composition structure. A recent method
developed to address precisely this need is the KobrA method [7]. This builds
on the techniques developed in the aforementioned methods by adding
support for the description of component realizations and the recursive
nesting of components. In this chapter we describe KobrA's approach for
modeling components and component architectures in terms of the UML, with
a special emphasis on recursive nesting of components and the models that
describe them.

www.manaraa.com

2. Model Driven, Component-Based Development 29

2. MODELING BUSINESS COMPONENTS

When addressing the problem of modeling business components It IS
important to accommodate the fact that components manifest themselves both
at run-time and at development time. At run-time, components constitute the
objects from which the overall functionality of the system is constructed,
while at development time components correspond to types which describe
the properties of the component instance existing at run-time. The overall
concept of a component therefore has both a type and an instance facet. Like
the UML, KobrA uses the unqualified phrase "component" to refer to
component types.

When discussing the nesting of components it is important to be clear
whether it is the nesting of run-time component instances or development
time components which is meant. This distinction is illustrated clearly in
Figure 1 which introduces the example that we will use throughout the
remainder of the chapter. The left hand side of this figure illustrates a tree of
components making up a small banking application which we refer to as the
Simple Banking System, or SIB for short. Using the UML "black-diamond"
symbol to represent composition, this illustrates that a Bank component
instance, is composed of two SUb-component instances, one instance of the
component Teller and another instance of the component Converter.
Furthermore the Teller component instance is itself composed of a
LookUpTable component instance.

The right hand side of Figure 1 illustrates the types from which these
component instances are instantiated. Obviously the component instance
:Bank is an instance of the component Bank and so on. The organization of
the components on the right hand side of Figure 1 resembles that of the
component instances on the left hand side, but it describes the component
containment hierarchy rather than the component instance composition
hierarchy. To understand the difference it is important to recognize that
components (i.e. component types) also have two distinct facets: a class facet,
which describes the properties and potential relationships of their instances,
and a module facet, which describes the properties of the component from the
point of view of a container. In KobrA, a component (viewed as a module)
contains another component (viewed as a module) when the definition of the
second is contained within the definition of the first. In UML terms, the
module facet of a component corresponds to the concept of a package. Thus,
the right hand side of Figure 1 indicates that the Bank component contains the
Teller and Converter components, and the Teller component contains the
LookUpTable component. The role of the BankContext will be explained
shortly in section 3.1.

www.manaraa.com

30

Run-time Composition Tree
(Component Instances)

Development-time Containment Tree
(Components)

Figure 1. SIB System - Version 1

Chapter 2

The run-time composition tree and development time containment tree do
not always have to have the same shape. However, there are strict visibility
rules which determine what composition trees can be derived from a given
containment tree. These are the visibility rules usually associated with nested
modules or packages in a modeling or programming language. The basic idea
is that a module has visibility of everything in the private parts of every
modules which contain it (directly or indirectly) unless that thing happens to
be another module. In this case the first module only has visibility of that
module's (i.e. the second module's) public part. Thus, in the containment tree
on the right side of Figure 1, the component LookUpTable can see anything
defined in all the components that contain it, in this case Teller and Bank.
This set of things includes Converter, since this is defined in Bank. However,
because Converter is a component, LookUpTable can only see the public part
of Converter. It does not have visibility of anything defined in the private part
of Converter, including any of its subcomponents if there happened to be any.
We explain later what we mean by the public and private part of a component.

www.manaraa.com

2. Model Driven, Component-Based Development

2.1 Specification

Specification

Irtsa:ilcnMx:13
(LM...cdta:x.ra:Jcn~)

BB-a.1crM:rla
:,. {LM.s:aa:tmd~

Sru:jlIa'~

(lM-daacqoo: dq;JaTE)

Realization

Figure 2. Component Modeling Artifacts

31

Figure 2 illustrates the set of primary modeling artifacts which are used to
describe the properties of a business component in KobrA. The specification
of a component captures all the externally (i.e. client) visible properties of a
component, and thus when viewing the component as a class, the specification
represents the component's interface. When the component is viewed as a
module, however, the specification represents the public part of the
component since it contains everything that is meant to be externally visible.
Finally, from the perspective of the development process the specification
defines the requirements that realizations of the component have to satisfy.

As illustrated in Figure 2, a component specification consists of three
tightly interwoven models. These models, which are derived from those
popularized in the classic OMT method [8], provide inter-related views on
distinct aspects of the externally visible characteristics of the component. The
structural model forms the foundation for the rest of the specification by
defining the externally visible concepts manipulated by the component, the
externally visible components with which the component interacts, and any
externally visible structure of the component. An example of a component's
specification structural model is shown in Figure 3.

Although this is quite a simple example, this diagram contains a lot of
information about the properties of the Bank component. The «subject»
stereotype serves to identify which component the diagram is focused upon -
in this case Bank. From the diagram it can be seen that the Bank component
has one logical attribute which stores the number of accounts held by the
Bank, and eight operations which provide various account manipulation and
currency conversion services. The diagram also shows the assumed nature of
accounts in terms of the Account class. In particular, it shows that a Bank
manipulates multiple accounts, each of which has four distinct logical

www.manaraa.com

32 Chapter 2

attributes including a limit attribute to indicate how far a customer can
overdraw an account.

({subject»
Bank

noOfAccounts: Integer :; 0

createAccountO
depositO
viewAccoun~)

withdrawO
closeAccountO
setRateO
convertToEuroO
convertFromEuroO

Account I

manages... ·1 accountlD: String
1------"---1, ownerName: String

I balance: Float

ilimitFloat
denom: String ,

Figure 3. Bank Specification Structural Model

The behavioral model describes the logical states exhibited by the
component. This includes a description of the events which stimulate the
component and the circumstances (i.e. states) under which the operations of
the component may execute. The behavioral model is essentially a state
machine which may be represented in a tabular form or in a graphical form as
a UML state chart diagram as illustrated in Figure 4. This diagram shows the
logical states exhibited by the bank. Initially a new Bank instance is in an
Empty state when it has neither accounts nor exchange rates stored. If the
createAccountO operation is the first to be executed form this state the Bank
instance enters a state where only account manipulation operations (except
setRate()) are permitted and then only in the default currency of Euros.
Alternatively, if the setRateO operation is the first to be executed in the Empty
state the Bank instance enters a state in which currency conversion operations
are permitted but no account manipulation operations (except
createAccount()). Only when the Bank instance has both accounts and
exchange rates stored are the full range of services available.

The functional model describes the logical effects of the component's
operations in terms of the information in the structural and behavioral models.
It consists of a collection of operation specifications, one for each operations
supported by the component. As illustrated in Figure 5, which shows the
specification for the withdraw() operation, an operation specification is a
textual table consisting of a sequence of so called "clauses". The most
important of these clauses are the assumes clause and the results clauses. The
former defines the preconditions which must be true for the operation to be
sure to function correctly, while the latter defines the postconditions which
become true if the operation is executed when the precondition is true. The
other clauses summarize information from the assumes and result clauses.
Specifically, the receives clauses lists the parameters received by the
operation, the returns clauses list information returned by the operation to the
invoker, the changes clause lists items from the Bank's data model which are

www.manaraa.com

2. Model Driven, Component-Based Development 33

affected by the operation and the rules clause identifies any logical definitions
used in the specification.

-.
a",,,,,,,," -WWttnrtI

-'" cIcEetW:ui[n:Otccru1s> 211
"' ... "
l=="

Figure 4. Bank Behavioral Model

As illustrated in Figure 5, theses clauses can be written in a natural
language style, or they can be written in a more formal style such as, for
example, in OCL. In whatever form they are represented, however, the
important point is that the specification must only refer to concepts in the
component's specification structural and behavioral models. This not only
ensures the mutual consistency of the models, but also provides a criterion for
establishing how much information they need to contain.

Name

I
Informal

Description

Receives

Returns

Changes

Rules

withdraw

an amount at money in a particular currency IS withdrawn from an account

JD: String
currency: String
amount: Float

a Boolean indicating whether the withdrawal was possible

account wllh accountlD = to

if currency = account denom then
equivalentAmoun\ = amount

el~

eauivalentAmount = amount converted to denomination

Assumes ID is a valid account 10
currency IS a valid currency identifIer

Result if account.balance • accoun1.hmit 2: equivalentAmounl
account.balance "= account balance - eqUivalentAmount !

L
____ -L ___ a_nd_T_rue_h_"_be_eo_"_'"_me_d~ _______________ JI el~

False has been returned

Figure 5. "withdraw" Operation Specification

2.2 Realization

The realization of a component describes how the component fulfills its
obligations by interacting with other components and objects. As such it
represents the private architecture and/or design of the component. This

www.manaraa.com

34 Chapter 2

applies the well established software engineering principle that the description
of how a software artifact works should be hidden from users of the artifact in
order to facilitate change. The realization also contains any private
subcomponents which the component defines for its own realization. Whereas
the specification represents the public part of the component, therefore, the
realization represents the private part which is not normally visible to external
components.

Figure 6. Bank Realization Structural Model

As illustrated in Figure 2, like a specification a realization consists of three
primary models. The structural model describes the components and types
involved in the realization of the component in questions. Figure 6 illustrates
the realization structural model for the Bank component. In accordance with
the development time containment tree (illustrated in Figure 1), this indicates
that two private subcomponents, Teller and Converter, are used by Bank to
realize its services. It also indicates that a more specialized form of Account,
known as PersistentAccount, is used in the realization. The realization
structural model of a component is a refinement of its specification structural
model. Thus, the information contained in Figure 3 is implicit in Figure 6 and
does not need to be explicitly reproduced. If desired, the type information in
the class diagram (Figure 6) can be augmented by an object diagram to depict
the configuration of the component instances within the realization.

www.manaraa.com

2. Model Driven, Component-Based Development 35

-t~,
vittrlav(ID wr. aT) : res I 2: an.etTcIiro (wr. aT) : e.ro -- --

Figure 7. "withdraw" Collaboration Diagram

The structural model identifies the components belonging to the
realization in hand. This static information must be augmented by dynamic
information which defines how the component instances interact to realize the
required services. This is the role of the other two models, the interaction
model and the activity model.

Figure 8. "withdraw" Activity Diagram

The interaction model is composed of a set of UML interaction diagrams
(i.e. sequence or collaboration diagrams) each of which describes how the
component and object instances interact to realize a particular service. Figure
7 illustrates the collaboration diagram which describes the realization of the
Bank component's withdrawO operation. Naturally, only instances of
components in the realization structural model can appear in such a diagram,
and messages can only be sent to these instances if they are listed as
operations in the model. Also, it is essential that the collaboration diagram
fulfills the requirements defined in the operation's specification, since this
defines the desired effects of the operation.

The activity model essentially documents the same information as the
interaction model but from a different perspective. Whereas the interaction
model emphasizes object interactions, the activity model emphasizes control

www.manaraa.com

36 Chapter 2

flow. It does this by documenting the algorithms used to realize the services
in terms of activity diagrams. Figure 8 shows such an activity diagram for the
withdraw() operation of the Bank. If a collaboration diagram and an activity
diagram are both created for a given operation they must naturally agree on
the form of the algorithm used. As in the interaction model, there is one
diagram for each distinct activity supported by the operation.

3. NESTED COMPONENT ARCHITECTURES

Up to this point we have described how the characteristics and realization
of a single business component can be modeled using a suite of inter-related
UML diagrams, each providing a view on a different aspect of the component
and its services. In this section we explain how this approach can be
generalized to support the nesting of components, and thus to support a
comprehensive and recursive approach to component-based development.

As explained in the previous sections, there are two distinct dimensions
involved in the hierarchic organization of components: the run-time
dimension related to the nesting of component instances and the development
time dimension related to the nesting of components (i.e. component types).
Following the terminology of the UML, the run-time nesting of component
instances is referred to as composition, while the development-time nesting of
components is referred to as containment. The basic principles involved in
creating each hierarchy individually are fairly straightforward - the real
challenge is to define how the two dimensions should relate to one another.

The basic ideas involved in nesting components at development time are
illustrated in Figure 9 and depend on the module-like properties of
components. Assuming that the models/diagrams for a component are
contained in the module (in UML terminology - package) for that
component, the essential idea is to embed the module for a subcomponent
within the module of its parent component. As illustrated in Figure 9, this
implies that the models for a subcomponent are subservient to (i.e. based
upon) those of the parent component. In particular, the nature of a
component's specification is determined by the nature of the realizations of
the component's parent and clients. Thus, in the case of the SIB example, the
specification of Teller is derived from of the realization of its parent
component (i.e. Bank) since this is its only client. Figure 9 shows the same
hierarchy of components as that depicted on the right hand side of Figure I,
but with an emphasis on the models used to describe the components.

www.manaraa.com

2. Model Driven, Component-Based Development 37

Tala-

Figure 9. Models in a Containment Hierarchy

In KobrA, therefore, all components in a component-based system are
treated in the same way and are modeled using the same general suite of UML
models. To illustrate this point further, Figure 10 shows the specification
structural model of the Teller component, one of the subcomponents of the
Bank component. This diagram provides a structural view of the Teller as an
independent component, but is nevertheless strongly related to the
information in the Teller's parent (i.e. Bank). In this particular case, since
Teller has no other clients than Bank, the information presented in Teller's
specification structural model is essentially the subset of information in the
Bank's realization structural model which has a bearing on the properties of
Teller.

«subjecb>
Teller

I noOfAccounts: Integer := 0

createAccountO
getAccountO
closeAccountO

I

1

I PersistentAccount

.1 accountiD : String
.. I ownerName : String
I balance: Float
lim~: Float
denom : String

Figure 10. Teller Specification Structural Model

Naturally the other specification models of Teller are also driven by the
nature of the Bank's realization in a similar way.

www.manaraa.com

38 Chapter 2

The composItIon hierarchy captures the run-time manifestation of the
nesting of components as it relates to component instances. In the
development time description of a component-based system, this information
is captured in the structural model of component realizations. For example,
the black composition diamonds in the Bank's realization structural model
(Figure 6) explicitly indicate that an instance of Bank is composed of an
instance of Teller and instance of Converter. The fact that a Teller instance is
itself composed of a LookUpTable is not defined at the level of the Bank since
this is a matter for the private realization of Teller. Thus, this information
would be documented in the Teller's realization.

3.1 Context Realization

Component realizations play an instrumental role in enabling both the run
time composition tree and the development time containment tree to be
modeled in a clean and straightforward way. The introduction of realizations
as an equal partner to specifications in documenting the properties of
components is one of the main contributions of KobrA. However, the
importance of realizations does not stop there. They also have an important
role to play in capturing the environment in which business components are
expected to operate.

As explained in the previous subsection, component specifications are
developed in the context of the realization of the component's parent (and/or
other clients of the component) since this defines what the component is
expected to do. But this begs the question as to what happens at the top of the
composition hierarchy where the component representing the entire system
needs to be specified. The answer is depicted in Figure 9. In KobrA the
environment of the system component is itself documented as a realization.
For obvious reasons this is known as the context realization since it describes
the properties of the context of the system component.

Interestingly, the models contained within a realization closely resemble
those that are generated in traditional UML-based requirements elicitation and
analysis techniques. Operation (or activity) specifications, interaction
diagrams and class diagrams are the essential products of use case analysis,
and activity diagrams are the essential products of business process modeling.
This close correspondence between KobrA realization models and traditional
analysis models might at first seem surprising, but when one considers the
fact that introducing a new system into a business environment always
changes that environment, and thus can be viewed as a form of realization, the
relationship between analysis and realization is obvious.

Since they model the emergent properties of a collection of components,
KobrA realizations actually have an analog in most contemporary component
oriented development methods. Other names used to capture this idea include

www.manaraa.com

2. Model Driven, Component-Based Development 39

ensemble [9], community or assembly. The only difference in KobrA is that
the concept is reapplied recursively in the body of the system's architecture to
describe the designs of internal components as well as to describe the
properties of the system and/or its environment.

3.2 Tree Alignment

The previous subsections have discussed the run-time composition tree
and the development time containment tree as separate dimension of a
component-based architecture, but did not discuss how they relate to one
another. The whole point of the KobrA approach is to provide heuristics and
strategies for aligning the two trees so that the development of components
can be driven by the required run-time architecture.

Using composition as the basis for aligning the run-time and development
dimensions of a component-based architecture is difficult because a system
may in fact not always contain a single composition tree. Composition, as
defined in the UML, has a number of strict requirements (such as lifetime
dependency of the part component on the composite component) which may
not always be met. Thus, a system may have multiple disjoint composition
trees, or it may not have a composition tree at all. One run-time structure
which all component-based systems do have, however, is a creation tree. This
is derived from the creation relationship that exists when one component
instance creates another. Since every component instance must have exactly
one creator, the creation relationships in a system always traces out a tree that
is rooted at the component instance representing the system. Moreover, since
composition is closely related to creation, the creation tree subsumes any
composition trees within the system, at least at the point when it is first
generated. For these reasons it is the creation tree which is actually used as the
basis for the alignment of the run-time and development time dimensions.

The basic requirement when aligning the two trees is that the shape of the
containment tree must allow the required creation tree to be generated in
accordance with the component visibility rules described previously. For a
given creation tree there are usually numerous compatible containment tree
shapes that could be used. In fact, a universally applicable shape is a two level
tree which has the system component as its root, and all other components as
its direct subcomponents. By definition, this shape gives all components
visibility of all other components, and thus allows any form of creation tree to
be created. However, such a containment tree wastes the opportunities to
improve the cohesion and coupling of the architecture by hiding private
realization details. The goal therefore is to find the optimal balance between
visibility and information hiding based on the needs of the desired run-time
creation tree.

www.manaraa.com

40 Chapter 2

The various principles and mechanisms that can be used to achieve this
balance are the topic of the following sections. In each section we address a
particular principle and/or mechanism and show how it can be used to
determine the alignment of the creation and containment trees. In fact, the
principles and mechanisms are very similar to those used by programmers
working in traditional object-oriented programming languages. The only
difference is that in KobrA these are applied to models at the level of business
objects, while with programming languages they are applied at the level of
modules, classes and objects. To provide a concrete illustration of the analogy
between tree alignment in KobrA and tree alignment in an object-oriented
program, in each of the following sections we present the outline of a
"reference" Java program which has the same run-time and development time
architecture as the KobrA models. To mirror the visibility rules of component
containment we use the concept of inner classes in Java, since these have the
same visibility semantics. However, packages could also have been used.

public class BankContext {
public class Account I};
public class Bank {

private class Telier {

};

private class LookUpTable I};
private LookUpTable L ~ new LookUpTable{};

};

private class Converter {};
private Teller T = new Teller ();
private Converter C = new Converter();

public Bank B ~ new Bank ();
};

Figure 11. SIB Example Version I Reference Implementation

Figure 11 illustrates the reference implementation for the architecture
shown in Figure 1. The containment hierarchy is captured by the text in
regular font while the creation tree is captured by the italicized text.
Indentation indicates the scoping (or embedding) level of an artifact. Thus
from Figure 11 it can be seen that that class BankContext contains the
definition of two classes, Account and Bank. Account does not represent a
component, but is needed as a supporting data structure. The class
BankContext also creates an instances of the system component Bank. The
Bank class, in tum contains the definition of two inner classes, Teller and
Converter. Bank also creates an instance of each of these classes. Finally, the
class Teller defines an inner class LookUpStore, and creates one instance of it.
Thus, the organization of the class definitions in Figure 11 exactly matches
the containment tree on the right hand side of Figure 1, and the organization
of the creation of objects exactly matches the creation tree (in this case also
composition tree) on the left hand side of Figure l.

It is important to note that while this design could be (and has been) used
to create working implementations of the system, it is not meant to imply that

www.manaraa.com

2. Model Driven, Component-Based Development 41

a real implementation would take this form. Real implementations of this
form of architectures would need to take into account many real world
performance and quality issues which are not addressed here.

4. COMPONENT SHARING

One of the most important influences on the shape of the containment tree
is the need for two or more component instances to have visibility ofthe same
component type. This need arises for example when one component instance
needs to use the services of another component instance that it did not create,
or when two components simply wish to have their own private copy of a
given component (type). The second situation is illustrated in Figure 12.

Run-UnM: lompogj\lOn Tree
(Componenlinsl!U1Q:s)

Developmel1l-lIm<.: Containment Tree
(Components)

Figure 12. SIB Example - Version 2

In this version of the SIB system architecture, the Converter component
instance uses its own private LookUpTable to store exchange rates. This
means that Teller and Converter both need to have visibility of LookUpTable,
otherwise they could not both instantiate it. With the mechanisms currently at
our disposal the only way to achieve this is to elevate LookUpTable from
being a private subcomponent of Teller to being a peer of both Teller and
Converter, as illustrated in Figure 12. This gives both components the
necessary visibility of Teller. The corresponding references implementation is
shown in Figure 13.

public class BankContext {
public class Account I};
public class Bank {

private class LookUpTable {}i
private class Teller {

private LookUpTable LT ~ new LookUpTable I);
};

private class Converter {

www.manaraa.com

42

};

);

private LookUpTable LC ~ new LookUpTable (I;
};

private Teller T = new Teller ();
priva~e Converter C = new Converter ();

private Bank B ~ new Bank II;

Figure 13. SIB Example Version 2 Reference Implementation

5. PUBLIC CONTAINMENT

Chapter 2

Because the need for components to share visibility of other components is
very common, using the aforementioned technique to ensure the required
visibility often results in a flat tree where almost all the components are direct
children of the root. This not only increases the coupling of the components in
the architecture, but also destroys any resemblance between the creation and
containment trees.

Run-I1me C""'po.ri'"m T,a
!Comp,,",,",ln.<lol'lceSI

De"eim'm~"'-"''',' ("","ammenl lea

IComl'0"'·"'_"

Figure 14. SIB Example - Version 3

To alleviate this problem, KobrA supports the concept of public
containment in which a component can declare a subcomponent to be publicly
visible. This means that when a component has visibility of another
component, it also has visibility of that component's public subcomponents.
As illustrated in Figure 14, public containment allows a component to remain
encapsulated by the parent component to which it most naturally belongs and
also enables the shape of the containment to much more closely resemble the
creation tree.

The run-time architecture of version 3 of the SIB system is identical to that
of version 2. The only difference is that the containment tree uses public
containment to make LookUpTable visible to Converter. This allows
LookUpTable to remain a subcomponent of Teller whilst at the same time

www.manaraa.com

2. Model Driven, Component-Based Development 43

being visible to Converter. In the UML models, the fact that a component has
a public subcomponent is shown by including it in the specification structural
model as well as in the realization structural model, and also by annotating the
relation between them using the «public» stereotype. In the reference
implementation, the fact that LookUpTable is a public subcomponent of Teller
corresponds to making it a public inner class, as illustrated in Figure 15.

public class BankContext {
public class Account {}i

};

public class Bant {

};

private class T9l1er {
public class LookUpTable {};
private LookUpTable LT = new Lool:UpTable () ;

};

priva~e class Converte~ {
private LookUpTab~e LC = new LooJ.:UpTable ();

};

private Teller T = new Teller ();
private Converter C = new Conve~ter ();

private Bank B = new Bank ();

Figure 15. SIB Example Version 3 Reference Implementation

6. PUBLIC COMPOSITION

Although it is usually best to hide the parts of a composite component
instance so that they cannot be seen by its clients, this is not always the case.
Sometimes the fact that a component instance is composed of multiple parts is
a logical and natural aspect of the component's definition. For example, a car
has many parts (i.e. components) which are hidden to its users (e.g. the engine
and gear box) but it also has many parts which are visible (e.g. the steering
wheel and gear stick) and which contribute towards the users perception of
what a car is. The same situation also exists frequently in the case of software
components. For example, user interface components often make their
subcomponents directly visible to their users. Forcing such logically public
parts to be conceived of as private introduce a lot of additional modeling
overhead because the services which they provide must be re-exported by the
composite object. At the level of the composite object these services (i.e.
operations) essentially play the role of forwarding operations and thus serve
no proper role.

www.manaraa.com

44

RUlI-,imr" Composition Tree
(Comprmcnlln,,'anCeS)

Deve/opml'nl-limc COJllainmenl 7 ree
flonll'onems)

Figure 16. SIB Example - Version 4

Chapter 2

To allow such a situation to be modeled in a more natural way KobrA also
supports the concept of public composition. This is the analog of public
containment, but at run-time rather than development time. As might be
expected the two concepts are complementary, and it is common to use public
containment to attain the component (type) visibility needed to public
composition.

public class BankContext {
public class Account I};
public class Bank {

private class Teller

};

};

private class LookUpTable {}i
private L = new LookUpTable();

public class Converter {};

};

public Teller T ~ new Teller I);
public Converter C = new Converter ();

public Bank B ~ new Bank I);

Figure 17. SIB Example Version 4 Reference Implementation

This is the situation illustrated in Figure 16. The Converter instance is
defined to be a public part of Bank in the composition tree, so the Converter
component is defined to be a public subcomponent of Bank in the
containment tree. This gives clients of the Bank the visibility needs to access
the Converter instance directly. The advantage of this architecture is that
Bank is now relieved of the responsibility of having to support services
actually implemented by Converter.

www.manaraa.com

2. Model Driven, Component-Based Development 45

7. COMPONENT SPECIALIZATION

Using public composition to make a part visible to clients of a composite
component simplifies the modeling of such scenarios, but it forces all of the
part's interface to be exposed. Often, it would be better to make only some of
its interface public, and keep the rest private. In KobrA, this can be achieved
by a similar mechanism to that found in object-oriented programming
languages such as Java. The basic idea is that independent component
specifications can be defined (without associated realizations) to play the role
of abstract classes (or interfaces in Java). Clients of such a specification use
them just as if they were a normal component, but when a community of
components is assembled within a realization an instance of a suitable
specialization component must supplied.

Run-time Compo.~i'ion 1,.ee
(Component In.~lance.l')

Ik'ndo!'",enHim{' COnlainmenl Tree
(e omponenls)

Figure 18. SIB Example - Version 5

Using this mechanism it is possible to control how much of a private part's
interface is actually exported, as illustrated in Figure 18. Public Converter is a
specification which defines the set of services that a Bank instance wishes to
export. It therefore plays the role of an abstract class (or in Java an interface)
in an object-oriented language. The full Converter component is then defined
as a specialization of this specification, and adds the extra features that Bank
does not wish to export. In Java this corresponds to a class implementing an
interface as illustrated in Figure 19.

public class BankContex~ {
public class Account {};
public class Bank {

public inter=ace PublicConverter
private class Teller {

private class LookUpTable {I;
new LookUpTable L;

I;
private class Converter implements PublicConverte~{};

www.manaraa.com

46

};

};

private Teller T ~ new Teller I);
public Converter C = new Converter ();

public Bank B ~ new Bank I);

Figure 19. SIB Example Version 5 Reference Implementation

8. DISTRIBUTED COMPONENTS

Chapter 2

The previous versions of the SIB example have all assumed that a single
component, Bank, subsumes the functionality of the entire application, and
thus in essence represents the system to be developed. While this represents
an effective architecture for component-based systems, it is not the only way
of deploying components. Many applications are actually organized as a set of
distributed component instances, each executing on its own processor (or
node as it is called in the UML). Such applications are therefore composed of
several independently deployable components which have to be
independently instantiated and given access to each other dynamically. This
model of system configuration has assumed greater importance since the
advent of Web services. Web services are essentially independently created
component instances which can be accessed dynamically via the Internet.

Figure 20 illustrates how this scenario is handled in KobrA. Since there is
no longer an explicit component that represents the root of the containment
and creation trees, the context has to play this role. The containment tree on
the right hand side of Figure 20 illustrates that the Converter and
LookUpTable components have been elevated to the same level as Bank and
thus essentially represent "systems" in their own right. The «acquires»
relationships between the components also highlights the fact that instances of
these components have to gain access to their servers dynamically.

The right hand side of Figure 20 illustrates a particular configuration of
component instances generated from these components. The BankContext is
included in this tree as a "pseudo" component instance to serve as the root of
the creation tree, although no actual BankContext exists. The component
instances shown as parts of the BankContext have to be individually created
and initialized by some means not specified by the model (e.g. manually).
Also, note again the use of the «acquires» relationships to indicate that
components have to acquire access to their servers dynamically.

www.manaraa.com

2. Model Driven, Component-Based Development

Run-lime Compo,I'llir)IJ T rife

(Comv<mem ilL<laneesl

Development-lillie COn/ainm.-nI1,-",
(Components)

Figure 20. SIB Example - Version 6

47

The reference implementation for the distributed version of the SIB
example simply elevates the independently executable components, and their
creation, to the level of the BankContext. Teller is now the only component
instance which is regarded as being part of another component, and is
automatically generated by that component.

public class BankContext {
public class Account {I;
public class LookUpTable {};
public class Conver~er {};
public class Bank {

};

private class Teller {
private Teller T = net.-.' Teller ();

};

public Bank B = new Bank ();
public LookUp7'able LT ~ new LookUpTable ():
publ..L c LookUpTabl e LC = ne~' LookUpTabl e ();
publ i c Converter C = ne\.\'" Converter (),.

Figure 21. SIB Example Version 6 Reference Implementation

9. CONCLUSION

The advent of component-based development in general, and business
components in particular, promises to radically improve the way in which
software is developed and maintained. However the effective description and
deployment of business components is contingent upon the availability of a
simple and systematic method for modeling their properties. The required
approach must not only provide a way of specifying the interfaces of
components, but must also provide a means to model the way in which they
are realized. Moreover, the approach must allow these models to be organized
hierarchically so that the advantages of component assembly can be applied at
all levels of granularity in a recursive manner.

www.manaraa.com

48 Chapter 2

In this chapter we have described a method, known as KobrA, which
meets this needs in terms of the UML. The method's key distinguishing
features are its introduction of component realizations to model how the
services of a component are realized in terms of a community of other
components, and the recursive application of UML models to describe the
emergent properties of a nested hierarchy of components. The method also
defines strict rules as to how these UML models should be applied and how
they should be related to one another.

To enable the development-time containment tree to be optimally aligned
with the run-time creation tree, the basic component visibility rules are
augmented in KobrA by several advanced modeling concepts, including
public composition, public containment and component specialization.
Together with the basic component development techniques these enable the
properties of a community of business objects to be modeled in a
straightforward yet comprehensive manner, and the true potential of model
driven, component-based development to be fulfilled.

REFERENCES

[I] Object Management Group, OMG Unified Modeling Language Specification, Version 1.4,
September 2001.

[2] Object Management Group, Model Driven Architecture -a Technical Perspective,
Document no. ormsc/01-07-01 July 2001.

[3] P. Allen, S. Frost., Component-Based Development/or Enterprise Systems - Applying the
SELECT Perspective, Cambridge University Press/SIGS Cambridge, 1998.

[4] D. D'Souza, A. C. Wills, Objects, Component and Frameworks with UML, The Catalysis
Approach, Addison-Wesley, 1999.

[5] 1. Cheesman, J. Daniels, UML Components: A Simple Process/or SpecifYing Component
Based So/tvvare, Addison-Wesley, 2001.

[6] Object Management Group, UML Profile/or Enterprise Distributed Object Contributing
(EDOC), Document no. ptc/02-02-05. 2002.

[7] C. Atkinson, 1. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R. Laqua, D. Muthig, B.
Peach,1. Wiist, J. Zettel, Component-Based Product Line Engineering with UML, Addison
Wesley, 2001.

[8] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen, Object-Oriented Modeling
and Design, Prentice-Hall, 1991.

[9] K. C. Wallnau, S. A. Hissam, R. C. Seacord, Building Systems from Commercial
Components , Addison-Wesley, 200 I.

www.manaraa.com

Chapter 3

SCARLET: Light-Weight Component Selection in
BANKSEC

Neil Maiden and Hyoseob Kim
Centre for HC! Design, City University London, UK

Abstract: This chapter reports the results of ongoing research into component-based
software engineering (CSSE) in the European banking sector as part of the EU
funded SANKSEC project. The importance of complex non-functional
requirements such as dependability and security presents new challenges for
CSSE. The chapter describes SCARLET, an innovative process that enables the
selection of components that satisfy such non-functional requirements. It
presents 6 meta-requirements that we identified at the beginning of SANK SEC
to inform SCARLETs design, and how SCARLET has been implemented to
meet these requirements.

Key words: Requirements engineering, software component selection, use cases

1. REQUIREMENTS ENGINEERING FOR
COMPONENT SELECTION

The European Union's Framework V programme is funding a series of
new research initiatives in component-based software engineering (CBSE).
BANKSEC is a 24-month research project that is investigating component
based dependable systems for the European banking sector. Dependable
systems such as internet banking generate new research challenges for CBSE,
in particular how to select components that, when implemented in an
architecture, satisfy complex non-functional requirements such as security and
reliability. This paper presents SCARLET (S,electing ~omponents Against
Requirements), a light-weight process that has been designed to satisfy 6
meta-requirements that we have identified for selecting components that
satisfy such non-functional requirements. The resulting process utilises an

www.manaraa.com

50 Chapter 3

extended form of use cases to enable more integrated requirements
specification and component evaluation.

Component-based software provides new opportunities for the efficient
development of secure and dependable banking systems. However, new
techniques are needed for specifying dependability requirements for
components, for developing trusted application frameworks that can
accommodate non-trusted components, and for designing and developing the
necessary software and process infrastructure for component selection and
integration. Indeed, the need to handle dependability requirements and
application frameworks imposes new meta-requirements on the component
selection process itself. We are delivering new processes that meet these
requirements to assist European banks to build systems that meet these non
functional requirements using components. We are researching and
implementing a process-driven software environment for component
selection, and validating it in banking applications such as corporate lending
support. To achieve this we have integrated previous research in PORE [1], a
method for COTS (Commercial Off-The-Shelf) software package selection,
with results from other requirements engineering research projects, to deliver
innovative processes to European banks. The outcome of this research is
SCARLET, an innovative requirements engineering process for components
based dependable systems that is being evaluated during trials with
BANKSEC's banking partners.

This chapter presents 6 essential meta-requirements that have driven
design of SCARLET. Section 2 describes SCARLET in the wider BANKSEC
component procurement process. Section 3 presents the 6 meta-requirements
that have informed the design of SCARLET and SCARLET's features that,
we believe, meet these meta-requirements. Section 4 outlines the SCARLET
process, then Section 5 describes how SCARLET utilises measurable fit
criteria of stakeholder requirements to deliver more objective and streamlined
component evaluation. Section 6 outlines the software prototypes being
developed to support SCARLET, and the chapter ends with current trials of
SCARLET in European banks.

2. SCARLET'S BASIC FEATURES

SCARLET is one of 3 key processes in BANKSEC's component-based
systems development process shown in Figure 1. It assumes inputs and
delivers outputs essential to the downstream component assembly process:
- In BANKSEC we determine high-level stakeholder and system

requirements that are independent of component selection process using
the C-Preview method [2]. We also use C-Preview to establish a high-level

www.manaraa.com

3. SCARLET: Light- Weight Component Selection in BANKSEC

system architecture that imposes technical requirements for component
selection in SCARLET;

51

- In component assembly we design, implement and integrate the software
system from the system architecture and selected software components.
BANKSEC is developing an application framework specific to the
banking sector to enable effective component integration.

Figure 1. BANKSEC's component-based systems development process

2.1 Process Integration in BANKSEC

We define process integration in BANKSEC in terms of the inputs and
outputs of the processes to ensure that process pre- and post-conditions are
satisfied. BANKSEC's workflow engine, a workflow management system
called FORO [3], supports the management of enterprise-wide processes and
their constraints in a co-operative, distributed environment. FORO was
originally developed and distributed by SchlumbergerSema. It supports the
whole process from the analysis and development to the execution of
workflow processes. Workflow analysis is carried out using a simple
graphical notation supported by the design tool. Once the design is done,
FORO provides a number of tools to implement the process and execute it.
Information integration is defined in terms of the information that is
manipulated by and exchanged between these processes, formalised in terms
of BANK SEC's situation meta-model described in Maiden et al. [4].

2.2 SCARLET's Basic Processes

One of the most important and unique characteristics of SCARLET is that
decision-making to select or reject software components drives the
acquisition, modelling and validation of stakeholder requirements, so that
decisions can be made in the right order at the right time. This means that, to

www.manaraa.com

52 Chapter 3

some degree, requirements determination is subordinated to component
selection. We believe that this is a novel feature of SCARLET.

SCARLET prescribes 4 essential decision-making goals, which are to
reject candidate components according to non-compliance with different types
of customer requirements:
1. Simple customer requirements - high-level services and functions,

requirements on the supplier or procurement contract, basic features of the
software component such as price and source, and adherence to
international standards;

2. Simple customer requirements that require access to the software
component through demonstration or use -lower-level services and
functions, and demonstrable attributes of the software component such as
interface features;

3. Simple customer requirements that are demonstrable through short-term
trial use of the software component - non-functional requirements such as
performance measured as speed of response, throughput, usability and
training;

4. More complex customer requirements with dependencies to other
requirements and legacy systems - non-functional requirements that
require more extensive trial use, such as maintenance and reliability
requirements, and inter-dependencies with other software components,
systems and legacy systems.
The rationale for this decision-making sequence is a simple and pragmatic

one - to make the right and most simple decision at the most appropriate time
using reliable information that is available to the selection team. As such the
sequence relies on a set of assumptions - that information about components
that enables the team to determine compliance with simple customer
requirements is more readily available than the information needed to assess
compliance with non-functional requirements. The sequence is similar to the
decision-making process in the original PORE method, but it has been refined
and improved in the light of the PORE trials [5] and research into decision
making methods.

SCARLET prescribes 4 processes to achieve these decision-making goals:
1. Acquire information about stakeholder requirements, software

components, suppliers and procurement contracts;
2. Analyse acquired information for completeness and correctness;
3. Use this information to make decisions about component-requirement

compliance;
4. Reject one or more candidate products as non-compliant with stakeholder

requirements.
Figure 2 depicts these 4 processes graphically. The achievement of the

processes is a broad sequence, in which the first process is acquisition of
information from stakeholders and the last is selection of one or more

www.manaraa.com

3. SCARLET: Light- Weight Component Selection in BANKSEC 53

candidate components, but the sequence of the intervening processes is not
predetermined and each process can be repeated many times.

IF objective and systematic
decision has been made

Figure 2. SCARLET's Situated-Dependent Decision-Making Process

However, developing new representation and techniques to implement this
process in an effective and usable form is a research challenge. To address it,
the BANKSEC consortium designed new representations and techniques to
meet 6 key meta-requirements described in the next section.

3. A RIGOROUS AND LIGHT-WEIGHT
COMPONENT SELECTION PROCESS

The integration of processes from disciplines as diverse as requirements
engineering, component testing and multi-criteria decision-making can often
lead to redundancies in their use as they have not been designed to work
together. To inform the design of SCARLET, we have identified 6 meta-level
requirements that SCARLET's representations and techniques need to satisfy:
1. Avoid duplicating artefacts and information used in different techniques,

in order to keep the process lean, mean, and hence usable;
2. Provide one representation of stakeholder requirements and software

components that can be used for different purposes including requirements
acquisition, component evaluation and decision-making about component
selection and rejection;

3. Design flexible processes that recognise the wide diversity and
applicability of situations in which software components are selected;

www.manaraa.com

54 Chapter 3

4. Design processes that can be tailored to be successful in the different
project environments in which software components are selected, and for
the types of software components that are selected;

5. Enable a procurement team to make quick and objective decisions about
each component's compliance with one or more requirements
establishing compliance is essential for effective decision-making;

6. Deliver flexible and tailored guidance for processes from diverse
disciplines to a selection team in an effective manner.
We have designed SCARLET to satisfy these meta-requirements, and aim

to demonstrate this satisfaction in BANKSEC trials. Table I presents the key
features of SCARLET's design that enable it to meet each of the 6 meta
requirements.

Table 1 Key SCARLET features that satisfy its meta-requirements
Meta-requirements SCARLET's Features
1. Avoid artefact and information duplication A single representation to enable the

acquisition and testing ofrequirements
2. Develop representations of requirements and Extended use case specifications designed
components that can be used for different for effective requirements specification and
purposes with techniques from different component evaluation
disciplines
3. Design flexible processes that can be used in Situated process guidance that is
diverse component selection processes underpinned with knowledge about when

and how to use different techniques
4. Component selection processes that can be A parameterised SCARLET process
tailored to fit different procurement projects
5. Quick and effective decision-making about The extension ofYOLERE's measurable fit
component's compliance with stakeholder criteria to deliver stakeholder requirements
requirements that can be used to demonstrate component

compliance with each requirement
6. Deliver flexible and tailored process Integrated BANKSEC software
guidance to procurement teams in a form that environment linked to requirements and
can be used component information repositories that

offers process guidance to selection teams

Each of SCARLET's 6 features are described in tum.
Avoid artefact and information duplication: Selecting software

components that are compliant with stakeholder requirements is a complex
process. It combines knowledge and skills from requirements engineering,
software architectures, component evaluation, system testing and multi
criteria decision-making. However the integration of requirements, modelling,
evaluation, testing and decision-making techniques is often cumbersome and
difficult to achieve. New multi-purpose representations of requirements and
components are needed to avoid artefact and information duplication. In
SCARLET we have chosen use cases to integrate infonnation about
requirements, their fit criteria and component evaluations in an effective fonn.
SCARLET's requirements, modelling, evaluation, testing and decision-

www.manaraa.com

3. SCARLET: Light- Weight Component Selection in BANKSEC 55

making techniques are all related to this one information artefact type, thus
avoiding duplication of artefacts and information. The VOLERE shell [6],
used to represent stakeholder requirements, is integrated into the use case
artefact.

Develop a multi-purpose representation: A use case offers a unique
structured representation for stakeholder requirements that affords both
effective requirements specification and component evaluation. Use cases
structure stakeholder requirements about the new system in a form that makes
them amenable for test case generation during component evaluation. Use
cases also define system boundaries that enable us to write context-sensitive
stakeholder requirements, thus making them more testable. We can also evoke
use cases as new stakeholder requirements are determined and added to each
use case without the need to restructure the requirements, as it is the use case
that provides the information structure for the requirements.

Flexible component selection processes: There are a large number of
situations that may arise at any point in a selection process, and many
techniques from different disciplines are available to achieve each situation.
Therefore, the order in which a selection team acquires stakeholder
requirements and information about component features or makes decisions
about component selection and rejection is situation-driven, that is it depends
on the current state of the stakeholder requirements, selected components and
evaluation process. In SCARLET we define a situation as a graph of contexts
that represent decisions to pursue a specific goal in a specific situation. A
situated process is a process that pursues a specific component selection goal
in a defined situation using techniques that are applicable in and tailored to
that situation.

Tailored procurement processes: Component selection must also be
customisable to handle the resources and time available for component
selection. Component selections can vary widely according to the size and
nature of the software 'component', from an ERP package to a .lavaBean
component, the number of candidate components, from 2 to over 100, and the
time to make a decision, from days to years. A one-size-fits-all selection
process will not work in most procurements. Therefore, SCARLET is
parameterised to allow a component selection team to remove one or selection
iterations, and to select techniques for situations according to these
parameters.

Quick and effective decision-making: The ability to make decisions
about each component's compliance to stakeholder requirements is critical for
effective component selection. As a typical process will involve a large
number of components and 100s of stakeholder requirements, teams need
quick, clean and effective techniques to determine component-requirement
compliance. In SCARLET we believe that preparation is essential, and
recommend the development of precise and testable requirements before

www.manaraa.com

56 Chapter 3

evaluation begins, to make the process as objective as possible. To achieve
this we build on tried-and-tested techniques requirements engineering
techniques, and in particular measurable fit criteria from VOLERE [6] that
have been tailored for evaluating software components. Instead of using
quantitative measures to record the degree to which a component satisfies a
requirement, as in the Weighted Average Sum or OTSO [7] methods,
SCARLET guides a team to record each component as either compliant or not
with each requirement. Compliance evaluation in SCARLET is described at
length in Section 5 of this chapter.

Delivering flexible and tailored process guidance: Selecting software
components is complex. The differences in the length and nature of, and
resources available for different selection processes introduce variety into the
process. Our use of situated process guidance to handle this variety demands
complex new mechanisms for delivering the process guidance. In SCARLET
we propose an integrated BANKSEC software environment linked to
requirements and component information repositories. The key feature of this
environment is the integration of process guidance to product models through
an innovative concept called a process chunk. Our definition of a chunk is
based on the process view of the ESPRIT III 6353 'NATURE' process
modelling formalism [8], [9]. As we have defined, a process is described as a
graph of contexts. A context represents the decision to pursue a specific goal
in a specific situation. A situation is a condition over the state of the model
being manipulated by the process. A process chunk is process guidance to be
implemented in a context, which is to meet a goal is a specific situation.
SCARLET combines such chunks together in different sequences, using its
FORO workflow engine, to form different processes to achieve the 4 different
decision-making goals.

The remainder of this chapter describes the SCARLET process in more
detail, and demonstrates how the process satisfies the 6 meta-requirements.

4. PUTTING IT ALL TOGETHER IN SCARLET

SCARLET's process structure and use of artefacts is depicted in Figure 3.
The process is divided into 4 key stages that enable different decisions to be
made about component selection and rejection. At each stage SCARLET
provides specific advice in terms of:

The types of requirement that enable decision-making at this stage;
The most effective techniques to determine these requirement types;

- The essential use cases for specifying requirements of these types;
- The measurable fit criteria to enable effective component evaluation

against these requirements.

www.manaraa.com

3. SCARLET: Light- Weight Component Selection in BANKSEC 57

As the process advances the selection team acquires different types of
requirements with different techniques, integrates them into the evolving use
cases in different ways, and develops different types of fit criteria to enable
effective component evaluation. The process encourages the team to acquire
the requirements in the order prescribed to facilitate effective decision
making. In this section the first 3 concept types are described.

I alllpk

Il-..:llIlJ<lII'·'

Figure 3. An overview of SCARLET

Requirements types: The team acquires different types of requirements to
enable the team to make decisions in a simple and pragmatic sequence - that
is to make the right and most simple decision at the most appropriate time in
the procurement process using reliable information that is available to the
team. SCARLET uses a type model derived from existing taxonomies of
requirements, and in particular the VOLERE approach [6] to guide
requirements acquisition. At the beginning of the SCARLET process, the
team will acquire supplier, contract, legal, portability, operational, capacity
and simple functional and information-type requirements to make simple
decisions to reject large numbers of non-compliant software components.
Functional and information requirements that are more difficult to test without
access to the components are acquired and tested later in the process. In
contrast reliability, availability, maintainability, security and safety-type
requirements are tested for component compliance at the end of the process
during longer component trials. More details of this requirements taxonomy
and the process guidance are found in [10].

www.manaraa.com

58 Chapter 3

Acquisition techniques: Requirements engineers face a major problem
when choosing techniques for acquiring stakeholder requirements. The
problem is not that there is a lack of techniques, since a wide range exists
from the ethnographic to the constructivist. Rather, little guidance is available
to choose techniques, to plan a systematic, well-grounded acquisition
programme, or even to sequence techniques. Indeed, many requirements
engineers are unaware of the techniques that are available. ACRE -
ACquiring REquirements [11] - recognises that different requirements
acquisition techniques have different strengths and weaknesses. SCARLET
implements ACRE's process guidance within its own selection process, and
provide specific techniques to acquire specific types of requirements at
different stages of the process.

Essential use cases: Use case specifications evolve to support decision
making at different stages in the process. Requirements discovered to enable
the first round of component rejection leads to the development of a use case
specification that is then evolved throughout the remainder of the process. We
adopt Constantine and Lockwood's [12] notion of essential use cases to model
the required behaviour of the future system, but extend it to integrate
requirements statements and use cases within a single and integrated artefact.
Furthermore, the use of use cases in the selection of software components
avoids one of the most well-documented weaknesses of use cases, that is
making premature design decisions about the future system. In BANKSEC
the decision to implement one or more software components reflects high
level decisions to automate functions and services, and the consequences of
these decisions can be written into the use cases to the infonn of automated
actions. As such, use cases offer an ideal but under-exploited solution to
requirements specification for component selection.

5. QUICK AND EFFECTIVE COMPONENT
EVALUATION

Effectively evaluating the degree of compliance of components to
requirements is at the heart of the SCARLET process. Evaluation can appear
trivial but is fraught with difficulties. Teams often use weighted scoring
methods such as the WAS to score degrees of compliance with each
requirement. This is intuitively appealing but problematic. Offering a
selection of range of compliance values creates numerous opportunities for
disagreement between team members. Furthermore, in one such selection
process, the post-evaluation analysis of the resolution of such disagreements
revealed a trend towards agreement with the scores of one consortium
member [1]. SCARLET seeks to reduce the risk of such disagreements and
bias during evaluation. Moreover, scoring methods such as the WAS

www.manaraa.com

3. SCARLET: Light- Weight Component Selection in BANKSEC 59

(Weighted Average Sum) do not fit well with the concept of measurable fit
criterion from requirements engineering. Use oflogical compliance tests from
requirements engineering introduces more rigour into component evaluation
and can reduce the scope for subjective judgement during component
evaluation.

To avoid these problems in SCARLET we adopt VOLERE's measurable
fit criterion concept [6] to determine precise and testable requirements to
drive objective component evaluation. A fit criterion defines the minimum
acceptance criterion, which is the minimum level of satisfaction of acceptance
of the requirement, expressed as a quantifiable or logical test. Dependability
requirements common to banking applications must often be decomposed to
deliver these quantifiable and logical tests. Furthermore, in SCARLET, the
selection team must take into account the relevant evaluation strategies used
to test for requirements compliance and tailor the fit criteria accordingly.
Using this approach a team evaluates each component as either compliant or
non-compliant with each requirement according to evidence available from
the evaluation.

SCARLET's innovative component evaluation approach is depicted in
Figure 5. It combines results from direct requirement-component evaluations
that give independent compliance scores with results of comparative analyses
of candidate components using the Analytic Hierarchy Process, or AHP for
short [13]. A typical evaluation would proceed in the 3 stages shown in Figure
4. Firstly, we use the AHP to prioritise requirements - essential when
selecting between components - using a technique that recognises the
difficulties of comparing criteria of different types. Rankings are obtained
through paired comparisons of requirement that are then converted to
normalised rankings using the eigenvalue method, which means that the
relative rankings of alternatives are presented in ratio scale values which total
one [13]. The AHP then enables the vertical computation of horizontal
comparison ratios. The resulting requirements rankings are both transitive and
complete.

Secondly SCARLET uses these ranked requirements to test for component
compliance using measurable fit criteria. This evaluation against individual
requirements using well-defined tests and units such as time or mean-time
between failures gives independent ratings of compliance. From the set of
requirement-component compliance we can determine the subset of
components satisfy the ranked requirements, but the relative degrees of fit is
not known. This is where the AHP is used again.

SCARLET then applies the AHP to undertake pair-wise comparisons of
the subset of compliant components with a subset of the requirements to
provide a ranking of the compliant components. The AHP adds rigour to the
evaluation by detecting inconsistencies between pair-wise comparisons with
eigenvalue method. The resulting rankings inform selection and rejection

www.manaraa.com

60 Chapter 3

decision-making in SCARLET, although the selection team needs to be aware
that the quantification of subjective, pair-wise comparisons may imply a level
of precision not available with the AHP. Of course this cannot always be done
effectively for large numbers of stakeholder requirements, so SCARLET
encourages the team to focus on requirements that enable effective component
discrimination, as described in [1].

Q) Pair-wise comparison
of requirements in the
hierarchies

® Compliance demonstrated

@ Pair-wise comparison of
compliant components
per requirement

Figure 4. A combined compliance and pair-wise approach to component evaluation

We believe that this combined decision-making approach will deliver
quicker and more effective component evaluation, thus meeting SCARLET's
5th meta-requirement. It strength is its belt-and-braces approach that
combines independent objective assessments of compliance with different
requirements types using measurable fit criteria with pair-wise comparisons of
requirements and of component compliance with these requirements to
provide a ranking of candidate components.

6. SCARLET AND BANKSEC SOFTWARE TOOLS

We are building a software prototype to implement the 6th SCARLET
meta-requirement using workflow, data base and process guidance
technologies in the BANKSEC environment architecture shown in Figure 5.

BANKSEC's workflow engine is based on 3 models of a workflow. The
process model defines what it is necessary to do. The infonnation model
defines the infonnation to use in the process. The organisation model defines
who must perfonn the process. The process model allows us to define
synchronised actions between tasks, like operations with process variables,

www.manaraa.com

3. SCARLET: Light-Weight Component Selection in BANKSEC 61

start a case, or any of the FORO API available actions. We use FORO tools to
model, apply and test the workflow. The process designer tool allows us to
design the SCARLET process in graphical form. Furthermore, FORO can be
integrated with other requirements engineering or decision-making tools using
a standard CORBA-IDL interface. Its API allows the selection team to build
ad-hoc tools or integrate off-the-shelf ones to support the wider selection
process.

lJ_nk~
Workflow

._ .• __ ._. Application
Q-

1M

Figure 5. Overview of the BANKSEC environment architecture

FORO's workflow application invokes 3 BANKSEC tools shown in
Figure 5. It invokes the C-Preview requirements tool for modelling high-level
system requirements and architectures that are input to the SCARLET
process. It also invokes the systems integration manager (SIM) that use
BANKSEC's application framework to support component assembly and
integration using components selected with SCARLET. The workflow
application also invokes SCARLET's process advisor tool to provide goal
driven process guidance using the contents of the workflow repository and
local process guidance informed using the current state of the requirements
and components data bases [14].

The BANKSEC workflow engine and software tools are currently under
development, and will soon be available to software developers once user

www.manaraa.com

62 Chapter 3

trials have been completed. We look forward to readers contacting us with
expressions of interest in SCARLET's finished processes and software tools.

7. CONCLUSIONS AND TRIALS

This chapter provides an overview of BANKSEC' s process for component
selection and the rationale for its design in terms of its 6 meta-requirements.
We are currently evaluating SCARLET by transferring it to 2 European
banks, Banca Popolare di Sondrio in Italy and Eurobank in Greece. The banks
are using SCARLET to guide the selection of software components for secure
and dependable banking applications such as home internet banking and
corporate loan management. In preparation for these trials, key stakeholders
from both banks have had input into the requirements and design for the
SCARLET process, to increase the likelihood of its successful take up. Each
trial will last 6 months, and will deliver SCARLET in different forms to
selection teams in the 2 banks. We look forward to reporting on the results of
these trials, and in particular the effectiveness of the implemented FORO
workflow engine in the near future.

ACKNOWLEDGEMENTS

The authors wish to thank all of the BANKSEC partners for their inputs to
and support for the work reported in this chapter. The work is funded by the
EU-funded IST-1999-20711 BANKSEC project.

REFERENCES

[I] Maiden N.A.M. and Ncube c., 1998, "Acquiring Requirements for Commercial Off-The
Shelf Package Selection", IEEE Software, 15(2),46-56.

[2] Kotonya G. and Sommerville I., 1998, "Requirements Engineering Processes and
Techniques", John Wiley & Sons.

[3] Gutierrez G.S., 1999, "The WIDE Project: Final Report", ESPRIT Project 20280, May,
1999.

[4] Maiden N.A.M., Kim H. and Ncube c., 2002, "Rethinking Process Guidance for Software
Component Selection", Proceedings I st International Conference on COTS-Based Software
Systems, Lecture Notes on Computer Science LNCS 2255, Springer-Verlag, 151-164.

[5] Ncube C. and Maiden N.A.M., 2001, "Selecting the Right COTS Software: Why
Requirements are Important", In Component-Based Software Engineering: Putting the
Pieces Together' (eds. George T. Heineman and WilJiam T. Councill, Addison-Wesley,
467-478.

[6] Robertson S. and Robertson J., 1999, "Mastering the Requirements Process", Addison
Wesley-Longman.

www.manaraa.com

3. SCARLET: Light- Weight Component Selection in BANKSEC 63

[7] Konito, J., 1996, "A Case Study in Applying a Systematic Method for COTS Selection",
Proceedings 18th International Conference of Software Engineering, IEEE, Computer
Society Press, 201-209.

[8] Rolland C. and Grosz G., 1994, "A General Framework for Describing the Requirements
Engineering Process", IEEE Conference on Systems, Man and Cybernetics, CSMC94, IEEE
Computer Society Press.

[9] Plihon V. and Rolland C., 1995, "Modelling Ways of Working". Proceedings 7th
International Conference on Advanced Information Systems Engineering, CAiSE'95,
Springer Verlag.

[10] Maiden N.A.M. and Kim H., 2001, "SCARLET: Process Advice for Component-Based
Software Engineering", Technical Report, Centre for HCI Design, City University London,
November 2001.

[II] Maiden N.A.M. and Rugg G., 1996, "ACRE: Selecting Methods For Requirements
Acquisition", Software Engineering Journal, 11(3), 183-192.

[12] Constantine L.L. and Lockwood L.A.D., 1999, "Software for Use", Addison-Wesley
Longman.

[13] Saaty T.L., 1990, "The Analytic Hierarchy Process", New York: McGraw-Hili.
[14] Maiden N.A.M. and Kim H., 2002, "SCARLET: Providing the Right Advice at the Right

Time when Selecting Software Components", Technical Report, Centre for HC! Design,
City University London, March 2002.

www.manaraa.com

Chapter 4

Built-in Contract Testing for Component-Based
Development

Hans-Gerhard GroB\ Colin Atkinson], Franck Barbier2, Nicolas Belloir2 and
Jean-Michel Brud
J lESE, Germany; 2 LJUPPA, Ulliversity of Pau, Frallce

Abstract: Assembling new software systems from prefabricated components is an attrac
tive alternative to traditional software development practices. However, the ex
pected reductions in development time and effort will only arise if separately
developed components can be made to work effectively together with minimal
effort. Lengthy and costly in-situ verification and acceptance testing directly
undermines the benefits of heterogeneous components and late system integra
tion. This chapter describes an approach that reduces manual system verification
effort by equipping components with the ability to check their execution envi
ronment at run-time. When deployed in a new system, built-in contract test
components check the contract-compliance of their server components, includ
ing the run-time system, and thus automatically verify their ability to fulfil their
own obligations. Thc chapter first considers the principles behind built-in con
tract testing, and then describes how built-in testing can be made a natural part
of component -based development.

Key words: In-situ deployment test, testing interface, tester component, test modeling

1. INTRODUCTION

The vision of component-based development is to allow software vendors
to avoid the overhead of traditional development methods by assembling new
applications from high-quality, prefabricated, reusable parts. Since large parts
of an application may therefore be constructed from prefabricated compo
nents, it is expected that the overall time and costs involved in application

www.manaraa.com

66 Chapter 4

development will be reduced, and the quality of the resulting applications will
be improved. This expectation is based on the implicit assumption that the
effort involved in integrating components at deployment time is lower than
the effort involved in developing and validating applications through tradi
tional techniques. However, this does not take into account the fact that when
an otherwise fault-free component is integrated into a system of components,
it may fail to function as expected. This is because the other components to
which it has been connected were intended for a different purpose, have a dif
ferent usage profile in mind, or are themselves faulty.

Current component technologies can help to verify the syntactic compati
bility of interconnected components (i.e. that they use and provide the right
signatures), but they do little to ensure that applications function correctly
when they are assembled from independently developed components. In other
words, they do nothing to check the semantic compatibility of interconnected
components, so that the individual parts are assembled into meaningful con
figurations. Software developers may therefore be forced to perform more
integration and acceptance testing in order to attain the same level of confi
dence in the system's reliability. In short, although traditional development
time verification and validation techniques can help assure the quality of indi
vidual components, they can do little to assure the quality of applications that
are assembled from them at deployment time.

The correct functioning of a system of components at run time is contin
gent on the correct interaction of individual pairs of components according to
the client/server model. Component-based development can be viewed as an
extension of the object paradigm in which, following Meyer [1], the set of
rules governing the interaction of a pair of objects (and thus components) is
typically referred to as a contract. This characterizes the relationship between
a component and its clients as a formal agreement, expressing each party's
rights and obligations. Testing the correct functioning of individual cli
ent/server interactions against the specified contract therefore goes along way
towards verifying that a system of components as a whole will behave cor
rectly. The approach described in this chapter is therefore based on the notion
of building contract tests into components so that they can validate that the
servers to which they are "plugged" at deployment time will fulfil their con
tract. Although built-in contract testing is primarily intended for validation
activities at deployment and run-time, the approach also has important impli
cations on the development phases of the software life-cycle. Consideration of
built-in test artifacts needs to begin early in the design phase as soon as the
overall architecture of a system is developed and/or the interfaces of compo
nents are specified. Built-in contract testing therefore needs to be integrated
within the overall software development methodology. In this chapter we ex
plain the basic principles behind built-in contract testing, and show how it can
be integrated with, and made to complement, the KobrA method [2] intro-

www.manaraa.com

4. Built-in Contract Testingfor Component-Based Development 67

duced in chapter two of this book as a model-driven approach to component
based development. Here, we use the notion of a component in the same sense
as it is outlined in this chapter. This is also discussed in more detail in [2].

The next section introduces the terminology and artifacts upon which
built-in contract testing is based. The main artifacts are tester components and
testing interfaces which represent the respective sides of a client/server rela
tionship between two components. The following sections then describe how
this technology can extend the KobrA development method. Section 4 dis
cusses a few practical implications that must be considered when applying the
technique in real software projects. Finally, Section 5 sums up and concludes
the chapter.

2. BUILT-IN TESTING ARTIFACTS

Meyer [1] defines the relationship between an object and its clients as a
formal agreement or a contract, expressing each party's rights and obligations
in the relationship. This means that individual components define their side of
the contract as either offering a service (this is the server in a client-server
relationship) or requiring a service (this is the client in a client-server relation
ship). Built-in contract testing focuses on verifying these pairwise cli
ent/server interactions between two components when an application is as
sembled. This is typically perfonned at deployment time when the application
is confif:,'Ured for the first time, or later during the execution of the system
when a reconfiguration is performed.

2.1 Built-in Tester Components

Configuration involves the creation of individual pairwise client/server re
lations between the components in a system. This is usually done by an out
side "third party", which we refer to as the context of the components. This
creates the instances of the client and the server, and passes the reference of
the server to the client (i.e. thereby establishing the clientship connection be
tween them). This act of configuring clients and servers is represented
through the KobrA style «acquires» stereotype illustrated in Figure 1. The
context that establishes this connection may be the container in a contempo
rary component technology, or may simply be the parent object.

In order to fulfil its obligations towards its own clients, a component that
acquires a new server must verify the server's semantic compliance to its c1i
entship contract. It means the client must check that the server provides the
service that the client has been developed to expect. The client is therefore
augmented with in-built test software in form of a tester component as shown
in Figure 1. This is called a server tester component, and is executed when the

www.manaraa.com

68 Chapter 4

client is configured to use the server [3]. In order to achieve this, the client
will pass the server's reference to its own server tester component. This is
represented through an «acquires» association between the server tester com
ponent and the server in Figure 1. If the test fails, the tester component may
raise a contract testing exception and point the application programmer to the
location of failure.

I l

Context Context

¥ «creates» Et' «creates»

~I ~I ~ II

«component» «acquires~ «component» «component» «acquires~ «component»
Client

,.
Server TestingClient

,.
Server

U I

«creates»

~

«component» «acquires»

ServerTester

Figure 1. KobrA style component containment hierarchy without and with built-in contract
testing

A test involves the invocation of the methods of an associated component
with predefined input values and the checking of the returned results against
the expected results. The input data and expected results are referred to as a
test case. Under the object paradigm, a test case also often not only involves
the checking of the results of the method invocations but also the checking of
the correctness of the state transitions according to the external states. A test
suite for a server tester component therefore contains a number of test cases
that are developed according to distinct testing criteria, for example the cov
erage of the state transition model or the coverage of the functional specifica
tion. These are typically augmented with tests according to equivalence-class
partitioning and boundary value analysis [2], [4], [5].

We call a client that owns a tester component and performs a contract test
on its acquired server a testing client or a testing component [3].

2.2 Build-in Testing Interfaces

The object-oriented and as a consequence the component-based develop
ment paradigm builds on the principles of abstract data types which advocate

www.manaraa.com

4. Built-in Contract Testingfor Component-Based Development 69

to the combination of data and functionality in a single entity. State transition
testing is therefore an essential part of component verification. In order to
check whether a component's operations are working correctly it is not suffi
cient simply to compare their returned values with the expected values. The
compliance of the component's externally visible states and transitions to the
expected states and transitions according to the specification state model must
also be checked. These externally visible states are part of a component's con
tract that a user of the component must know in order to use it properly. How
ever, because these externally visible states of a component are embodied in
its internal state attributes, there is a fundamental dilemma.

The basic principles of encapsulation and information hiding dictate that
external clients of a component should not see the internal implementation
and internal state information. The external test software of a component
therefore cannot get or set any internal state information. The user of a correct
component simply assumes that a distinct operation invocation will result in a
distinct externally visible state of the component. However, the component
does not usually make this state information visible in any way. This means
that expected state transitions as defined in the specification state model can
not normally be tested properly.

Server

«Functional Interface»
TestingClient

f «Functional Interface» «acquires»
... /' Testable
«Configuration Interface» Server
setServer (TestableServer)

«Testing Interface))

~~ stateSetting ()
stateChecking ()

1\

ServerTester
«acquires»

«Functional Interface»
testServer (TestableServer)

Figure 2. A testable server within the KobrA component hierarchy, and the organization ofthe
testing client and the testable server

The contract testing paradigm is therefore based on the principle that com
ponents should expose their logical or externally visible (as opposed to inter
nal) states by extending the normal functional server as displayed in Figure 2.
A testing interface provides additional operations that read from and write to
internal state attributes that collectively determine the logical states. These

www.manaraa.com

70 Chapter 4

auxiliary interface operations are usually derived through typical assertion
checking techniques [5], [6], although for contract testing they are much more
fonnally defined and applied, since they essentially become part of a compo
nent's nonnal functionality.

A testing interface augments the functionality of the tested server with
state checking and setting operations. The state checking operations verify
whether the component is currently residing in a distinct logical state (for
verifying the post conditions of a test case). The state setting operations set
the component's internal attributes to represent a distinct logical state (for
satisfying the preconditions of a test case). State checking operations are more
fundamental than state setting operations. The latter may often involve quite
considerable development effort. Thus, in most cases state setting will be
achieved by invoking the operations of the nonnal functional interface. Sub
sequently, the state checking methods may be used to verify that the precondi
tions (initial state) for a test case are satisfied.

Within the server tester component a test case may be applied in two alter
native ways. In the first way the state setting operations, if applicable, are in
voked to ensure the preconditions required for a test case, the tested operation
is invoked with the predetennined input parameters according to the testing
criterion, and finally, the state checking operations are invoked to verify the
post conditions required for a test case. In the second way is applied when no
state setting operations are provided by the tested component. Then, the op
erations of the component's nonnal functional interface have to be invoked to
bring the component into the desired initial state for a test. Since these opera
tions are part of the software that should be tested, the state checking opera
tions have then to be invoked to verify the correct precondition for the appli
cation of a test case. Finally, the test method is called, and the state checking
operations are used to verify the post conditions against the expected out
come.

We call a component that provides a testing interface and that is tested by
a contract tester component a testable server or a testable component [3]. For
example the bank component in Figure 3, becomes a testing bank since it per
fonns a contract test on its associated server, the converter component.

2.3 Built-in Test Components

The distinction between clients and servers is only intended to refer to the
roles that can be played in a pairwise interaction between two components.
When viewed from a global perspective, individual components can, and usu
ally do, play the role of both clients and servers. Any of the client/server rela
tionships of components may be subject to contract tests. In the server role, a
component provides a testing interface that supports the tests perfonned by its

www.manaraa.com

4. Built-in Contract Testingfor Component-Based Development 71

client's tester components, and in the client role, the component owns tester
components that use the testing interfaces of its associated servers.

We call a component that plays both roles (i.e. provides a testing interface
to its clients and contains its own tester components to test its servers) a Built
in Test (or BIT) component. For example, the converter component in Figure
3 is a BIT component because it provides a testing interface to its client, the
testing bank, and it owns a tester component that verifies the correctness of its
server, the testable lookup table.

3. BUILT-IN CONTRACT TESTING WITH THE KO
BRA METHOD

The previous section illustrated the artifacts that must be developed in or
der to apply built-in contract testing. This section describes how the built-in
contract testing artifacts are realized, and how built-in contract testing sup
plements the KobrA development method that was introduced in chapter 2.
Here, we focus on the testing methodology that is based on the KobrA devel
opment process. We extend the existing simple international banking (SIB)
system that was used in chapter 2 to demonstrate how the method can be ap
plied for test modeling, and for deriving contract testing components and in
terfaces. Chapter 2 also contains the KobrA specification for this example.

3.1 Built-in Testing Artifacts

The initial step is the identification of the pairwise client/server interactions
that must be tested. These are the identified acquires associations between the
components in the KobrA containment hierarchy.

I BankContext I

~::J

:-l :-l :-l
Testing

1
.J BlTConverter I J Testable

Bank ,'acqUires» «acqUires)·
LookUpTable

1 'I 1 "I
tJ

:-l
Testing

1
«acquires»

Teller

1

Figure 3. The architecture of the SIB system with contract testing artifacts represented by a
KobrA containment tree

www.manaraa.com

72 Chapter 4

The model in Figure 3 represents the same version of the SIB system as
that described in chapter 2 (i.e. version 6), but with contract testing compo
nents replacing the standard components. Components that are the source of
an acquires association will contain server tester components (testing compo
nent; testingBank, and testingTeller, Figure 3). Components that are the target
of an acquires association will provide a testing interface (testable compo
nent; testableLookupTable in Figure 3). Components that are the source and
the target of acquires associations will do both, provide a contract testing in
terface and contain their own server testers (BIT component; BITCol1verter.
Figure 3).

Each component that participates in an acquires relationship must be aug
mented with additional components or interfaces. In this instance we have
extended the original functionality of the SIB components from chapter 2 with
state setup and verification interfaces. Each testing component that extends
the original functional component owns one or more server testers, and these
are also associated with the tested server component. Essentially, this amounts
to passing the reference of the server to the server tester. This is represented
through the acquires relationships that originate at the components and the
testers in Figure 4. They define the individual contract testing artifacts that
must be developed for each component in the containment tree, and this illus
trates how they are related to the original functional components. This is the
way in which the KobrA method supports the parallel design and develop
ment of the test software together with the functional software. Every compo
nent may be associated with its respective testable and testing components
according to which form of testing is required.

www.manaraa.com

4. Built-in Contract Testingfor Component-Based Development 73

Converter

«configuration interface»
«public func. Interface»
setRate ()
convertT oEuros ()
convertFromEuros ()

'f «extends»

I Teller I I Bank TestableConverter

1 "conflguraho~ interface» I I «configuration interface» «stale setting interlace»

«public func. Interface» "public func. interface» «Slate checking interface),

«extends,,-t «extends» "T" 'T «extends»

rl TestingTelier
«creates»

TestingBank
«acquires"

BtTConverter f-
«creates» «c'eale,» i I «creates))

I ConverterTester
«acquires»

I LookupTableTester_A I Lookup TableT ester_B

I LookupTable

I "public func. interface»

1'"
T estableLookupT able

«acquires» ,<acquires» l «slate setting Interface»
«state checking interface»

Figure 4. The class diagram for the SIB system with contract testing artifacts (structural model)

3.2 Contract Testing Development Process

In the previous section we determined which components of an application
will be augmented with which contract testing artifacts. These are identified
in KobrA's hierarchical containment tree and specified in the structural
model. The resulting models comprise the extensions for testing as displayed
in Figure 4. These two views, containment tree and structural model, are
complementary and refine each other. In the following we will focus on how
the contract testing artifacts are derived from KobrA's behavioral and func
tional specification models.

3.2.1 Development of the Testing Interface

The testing interface is developed together with a server component. It ex
tends the testability of the server and it is primarily concerned with verifying
and setting the internal state attributes according to the logical states. The
logical states are part of a component's specification and are essential for us
ing the component correctly. These states define the externally visible behav
ior of the component when distinct events occur. In KobrA they are repre
sented through the specification behavioral model. This comprises a number
of UML statechart diagrams, or state tables like the one depicted in Table 1 in
the appendix. This defines the behavioral model of the Converter component.
It comprises the events that map to transitions (setRate, cOllvertToEuros and

www.manaraa.com

74 Chapter 4

convertFromEuros) plus the respective pre and post conditions according to
the initial and final states of the state model. Each entry in the state table
represents an "item of behavior" that must be verified when the component is
deployed. This means that each of these entries represents the specification of
at least one test case in a state transition tester component. We explain this in
the following subsection. What is important here is that the state table repre
sents the specification for the component's testing interface.

Each item in the table is defined according to initial and final states plus
the defined pre and post conditions that must be satisfied. In order to check
whether the state model is implemented correctly, all these items must be ex
ecutable in the form of tests. This means the component must be brought into
a state that satisfies the expected preconditions, and the component's post
conditions must be verifiable. The testing interface will therefore comprise
operations that make this feasible, and these are specified according to the
requirements in the state transition table (pre and post conditions, plus initial
and final states).

Table 2 (appendix) shows the operation specifications that verify the post
conditions of the Converter and set its preconditions. These make up the test
ing interface. The special operation ruOkO ("are you o.k.") transparently exe
cutes all internal assertion checking mechanisms that the component imple
ments. This is determined through additional specification that is not explic
itly represented in the behavioral model. For our Converter component this
operation can be made to check that each entry in the converter is only stored
once, for instance. Figure 5 displays the class diagram that represents this set
up.

Bank
I

«configuration interface» I
«oublic functional interface»

Converter

"configuration interface"
«public functional interface>,
+setRate (Curr,Rate)
+convertToEurns (Curr,Amt)
+convertFromEuros (CurT,Am"t)

I «extends»

T estableConverter
«extends» I

Ir----"---------; .<acqUlres» f-------------j
TestingBank ·<state checking mterface»

I .isEmpty ()
+tsLoaded ()
+isFuli ()
+isEntry (Curr)

«creates" i
Ir----'------, "acqUires»

ConverterTester

+isEntry (Cuff,Amnt)
+ruOk ()

Figure 5. The class diagram for the SIB system with contract testing artifacts

The state setting operations may be designed in the same way as the state
verification operations. However, their development can often involve con-

www.manaraa.com

4. Built-in Contract Testingfor Component-Based Development 75

siderable effort that basically amounts to re-implementing the full functional
ity of the component. This is typical for abstract data type containers that
store and manage data. In this particular example we would therefore recom
mend to use the normal functional interface in order to set the preconditions,
and then use the state verification operations to check that the preconditions
have been set correctly. How the testing interface is used by a tester compo
nent is the subject of the next section.

3.2.2 Development of the Server Tester Component

The server tester component is developed according to the needs of the
client which it will be built into. This server tester checks what the client has
been developed to expect from its server, including functionality as well as
behavior. The KobrA method provides a specification for each of the associ
ated server components that appear in the client's realization. According to
the principles of polymorphism, it is not a particular component that the client
expects, but any component that conforms to the client's specification (i.e. its
contract). The client will therefore accept a new server not only on the basis
that it provides the right syntactic signatures, but more importantly that it im
plements the contract in a semantically correct way.

KobrA's behavioral specification contains everything that is required to
set up a test suite that focuses on state transition testing, and KobrA's opera
tion specification and algebraic specification contain all the information that
is necessary to set up the functional testing. Functional testing and state transi
tion testing are related because an operation invocation always also triggers a
state transition (at least one that is reflexive). The ConverterTester component
that is built into the TestingBank will therefore embrace a number of test cases
that are based on the Converter's behavioral and functional specifications.
The Converter's behavioral model is represented through the state transitions
in Table 1 (see appendix).

Each of the fifteen items in Table 1 maps to a single test case for a Con
verterTester component with the initial state and precondition, the event that
triggers a transition, and the expected final state with the expected post condi
tions. Moreover, it represents a minimal but full set that covers the functional
specification (i.e. every defined element of functionality of the component is
tested) as well as the behavioral specification (i.e. every defined state transi
tion of the state model is covered). For example, the test case #4 in Table 1
will be designed in the following way:

initial state
loaded with n=2 setRate (Currl, Ratel)

setRate (Curr2, Rate2)
isLoaded () : true

www.manaraa.com

76

isEntry (Currl, Ratel) : true
isEntry (Curr2, Rate2) : true

or alternatively with the state setting operation

Chapter 4

loaded with n=2 setLoaded (2, {(Currl,Ratel),(Curr2,Rate2)})

event, the precondition is that the parameter Curr2 is in the Converter
convertFromEuros convertFromEuros (Curr2, Amount) : result

evaluation of final state and post conditions
loaded is Loaded () : true
return conversion result equals expectedResult : true

The state model together with the functional model essentially defines a
minimal test suite for checking the server. Additionally, any other test cases
according to any arbitrary test criteria such as equivalence-class partitiomng
or boundary value analysis are conceivable. All these additional tests may be
designed in the same fundamental way and use the same testing interface op
erations in combination with the normal functional interface operations of the
server.

4. CONTRACT TESTING IN PRACTICE

So far, we have only considered the technical principles behind built-in
contract testing and how the technology augments a mainstream model-driven
development method. In this section we discuss the implications of the tech
nology that must be considered when it is applied in real software projects.

4.1 Test Weight Selection

Since heavy tests are usually extensions of lighter tests, heavyweight tester
components will usually contain lighter weighted tester components. In other
words, the test method for a heavyweight tester will include a call to the next
lightest component as well as the additional test cases that make it heavier. By
hierarchically organizing test methods and tester components in this way, for
example through an «extends» mechanism, the replication of test cases at run
time can be avoided. A configuration interface can be used to select the re
quired test weight. In the same way that the configuration interface of the cli
ent sets up the connection to a server component, the tester component may
be acquired according to the required type and thoroughness of testing. This
means that testing components must provide a configuration interface that
comprises set up operations for functional components as well as set up op-

www.manaraa.com

4. Built-in Contract Testingfor Component-Based Development 77

erations for testing components. The class diagram that represents this situa
tion for the TestingBank is depicted in Figure 6.

The size and thoroughness of test that will be built into a component at de-
ployment time is dependent upon criteria such as:

Time of the test: that is how often is a test perfonned and at what time(s)
over the lifecycle of the application will the test be used, for example de
velopment time regression test, deployment-time configuration test, opera
tion-time reconfiguration test.
Origin of the component: in other words, did we get the component from a
trustworthy source, for example in-group, in-house, or third party devel
opment?
Mission criticality: for example is the application safety critical or not?
Availability of resources: in other words, are we dealing with an embed
ded system with low memory, or an Internet application?

I Bank

«extends»

TestingBank

«Configuration Interface»
setTester (serverTester)

I
I

J Converter I

l Lightweight I «extends:J'
ConverterT ester ._1

«extends» I I T estableConverter 1

l Mediumweight I jST
ConverterT ester «extends)

«extendS»1 «acquires»
«acquires» "'--H-e-av-ywLe-ig-h-t --, .------'---,

"'1 ConverterTester
BITConverter I

«acquires» t
I VM Tester I

«acquires» ~

Run-Time System I VM I

Figure 6. Test weight selection through a test configuration interface, and contract test of the
underlying run-time system, for example a virtual machine (VM)

4.2 Explicit Versus Implicit Servers

In general, two kinds of server components can be distinguished. The first
kind, known as explicit servers, correspond to the server components defined
explicitly as part of the developed application. These represent server compo
nents as typically understood. The second kind, known as implicit servers,
correspond to services supplied by the run-time system. This represents the
run-time support for the features of the used language (e.g. 110 capabilities).
With the advent of object-oriented languages and component technologies the
trend is that more of the features that were traditionally embedded within the

www.manaraa.com

78 Chapter 4

run-time support software are now found in predefined library classes. Java
provides a good example for this trend. The difference between these library
features and the explicit server components of the first kind is that they are
supplied implicitly.

A test of the run-time environment is perfonned when the component is
executed on a new platfonn. Built-in contract testing provides a natural way
to cope with this type of test. The approach for developing and deploying
tester components is the same as for explicit server components. This is also
illustrated in Figure 6. If a component comprises an in-built run-time system
tester it may complain if it is executed in an unsuitable run-time environment.

4.3 Testing Deployed Component Instances

When a built-in test is applied to a component, the data stored within the
component is changed. This is not a problem for server components which
have just been initialized, but for already deployed components that have been
executing for a while, the data stored in the component may be valuable. For
example, the currency conversion component that is used in the bank context
may contain a valuable list of exchange rates, and executing a built-in test on
the converter would completely mess up these values. This clearly poses a
problem because after the test, the component will be useless for the bank.
The same problem arises if multiple clients access one single server compo
nent. This can be circumvented if an exact copy of the deployed instance is
tested. Fortunately contemporary object oriented languages and some compo
nent technologies support such a mechanism (e.g. Java clone).

A similar problem arises, if a built -in reconfiguration test is perfonned in a
system that must continue to provide its service. The new component that re
places an existing one may make the run-time system of the application fail
during testing and thus jeopardize the entire system. We therefore recommend
the use of different processes for executing built-in contract tests in a running
system. The testing thread will notify the acquiring client when the test is suc
cessfully completed.

4.4 Support Framework for Built-in Contract Testing

Developing the contract testing artifacts for large and complex compo
nents is likely to demand considerable effort. This is natural, since bigger
components also require more testing than smaller components, simply by the
virtue of the fact that they provide more, or more complex, functionality.
Built-in contract testing technology acknowledges this fact and supports the
creation of the necessary artifacts through development frameworks. Such a
support environment is currently available as a Java class library that supports

www.manaraa.com

4. Built-in Contract Testingfor Component-Based Development 79

the development of built-in contract testing interfaces and components [3]. Its
basic architecture is displayed in Figure 7.

The shaded box on the right hand side represents the contract testing arti
facts that we have considered in this paper. The library simplifies the devel
opment of the testing interface quite considerably since it supports the imple
mentation of the specification state model inside the testable component. It
provides mechanisms that allow developers of the testing interface to define
the states and transitions of the component. This reduces the testing interface
to only two operations islnState and setToState, plus the feasible states that
can be set and verified. The BIT state monitor that is provided with the library
checks and sets the respective states and transitions during test. The test cases
inside the tester component abide by the same fundamental interfaces as those
of the library when they use the setToState and islnState operations of the
state based testability contract.

«interface»
BIT testability contract

executionCondition () : bool
InitializeTest ()
finalizeTest ()
IBITQuery ()

Figure 7. Architecture of a Java built-in contract testing support library

www.manaraa.com

80 Chapter 4

5. SUMMARY AND CONCLUSIONS

This chapter has described an approach for enriching components with the
capability to verify their run-time integrity, in situ, by means of built-in tests.
The idea of building tests into components is not new. However, previous ap
proaches concentrate on built-in development time class testing [7], or have
adopted a hardware analogy in which components have self-test functionality
that can be invoked at run-time to ensure that they have not degraded [8].
Since software, by definition, cannot degrade, the portion of a self-test which
rechecks already verified code is redundant, and simply consumes time and
space resources. The approach described in this chapter augments the earlier
work by focusing built-in test software on the aspects of a component's capa
bilities which are sensitive to change at run-time - namely the environment
which provides the services used by the component. This new emphasis is
characterized as built-in contract testing.

Built-in contract testing provides an architecture and a methodology that is
particularly well suited for highly dynamic and distributed systems, such as
Internet applications, and systems with dynamic reconfiguration. Since these
are the applications primarily targeted by modern component technologies,
built-in contract testing represents a natural extension to component-based
software engineering practices.

The work is currently oriented towards reconfigurable information systems
for which the overhead of run-time tests does not particularly affect efficiency
considerations. Extending the technology to real-time and embedded systems
still presents some challenges for future research in terms of how much in
built testing such systems may bear. We believe this methodology represents
a contribution towards the practical applicability of component technology
and component-based development practice. We have consequently integrated
built-in contract testing into a general-purpose model-driven approach to
component-based development, known as the KobrA method [2], which pro
motes the early design of tests along with functional artifacts. By extending
the component paradigm with effective in-situ verification techniques and
processes, built-in test technology brings the "plug and play" vision of com
ponent-based development one step closer to realization.

REFERENCES

[I] Meyer, B.; Object-Oriented Software Construction. Prentice Hall, 1997.
[2] Atkinson, c., et al.; Component-based Product Line with UML. Addison-Wesley, London,

UK,2001.
[3] ComponenH Project; Built-in Testing for Component-Based Development. Technical Re

port D.3, http://www.component-pius.org, 2001.
[4] Binder, R.Y.; Testing Object-Oriented Systems. Addison-Wesley, Reading MA, 1999.

www.manaraa.com

4. Built-in Contract Testingfor Component-Based Development 81

[5] Pressman, R.S.; Software Engineering, a practioner's approach, McGraw-Hill, New York,
1997.

[6] Somerville, I.; Software Engineering. Addison-Wesley, Reading MA, 1995.
[7] Jezequel, J.-M., Deveaux, D., and Le Traon, Y.; Reliable Objects: Lightweight Testing for

00 Languages. IEEE Software, July/August, 2001.
[8] Wang, Y., and others; Built-in Test Reuse in Object-Oriented Framwork Design. ACM

Journal on Computing Surveys, 23(1), March 2000.

ACKNOWLEDGEMENTS

This work is partially funded by the EC 1ST 5th Framework Project, Com
ponent+. The contribution of the Component+ consortium is gratefully ac
knowledged.

APPENDIX

Table 1 Converter component state transition table

initial precondition event final post condition

state state

I empty convertFromEuros empty exception

(CuIT,Amount)

2 empty convertToEuros empty exception

(CuIT,Amount)

3 empty setRate (CuIT,Rate) loaded (CuIT,Rate) stored

in Cony

4 loaded [CUIT in Cony] convertFromEuros loaded return conversion

(CuIT,Amount)

5 loaded [CUIT in COny] convertToEuros loaded return conversion

(CuIT,Amount)

6 loaded [CUIT! in Cony] convertFromEuros loaded exception

(CuIT,Amount)

7 loaded [CUIT! in Cony] convertToEuros loaded exception

(CuIT,Amount)

8 loaded [n<max-I & setRate (CuIT,Rate) loaded update (CuIT,Rate)

CUIT in Cony] in Cony

9 loaded [n<max-I & setRate (CuIT,Rate) loaded (CuIT,Rate) stored

CUIT! in Cony] in Cony

10 loaded [n=max-I& setRate (CuIT,Rate) full (CuIT,Rate) stored

CUIT ! in Con v] in Cony

II full [CUIT in Con v] convertFromEuros full return conversion

(CuIT,Amount)

www.manaraa.com

82 Chapter 4

12 full [CUrT in Cony] convertToEuros full return conversion

(CurT,Amount)

13 full [CUrT! in Cony] convertFromEuros full exception

(CurT,Amount)

14 full [CUrT! in Cony] convertToEuros full exception

(CurT,Amount)

15 full setRate (CurT,Rate) full exception

Table 2. Specification of the state verification and state setting operations of Converter's testing
interface

testing interface - state verification operations
Boolean isEmpty () Returns true if Conv is in n=O

the empty state.
Boolean isLoaded () Returns true if Conv is in n = 1 ..

loaded state. max-l
Boolean isFull () Returns true if Conv is in n=max

the full state.
Boolean isEntry (Curr) Returns true if Curr is

stored in the Converter.
Boolean isEntry (Curr, Rate) Returns true if the pair

(Curr,Rate) is stored in C.
Boolean ruOk () check of all internal asser-

tions
testing interface - optional state setting operations
void setEmpty () sets the Conv into empty n=O

state.
void setLoaded sets the Conv into loaded n = 1 ..

(n,{Curr,AmountH]) state. max-l
void setFull Returns true if Conv is in n=max

({Curr,AmountH]) the full state.
void setEntry (Curr) sets an entry Curr
void setEntry (Curr, Rate) sets an entry (Curr,Rate)

www.manaraa.com

Chapter 5

Interfaces and Techniques for Runtime Testing of
Component-Based Systems

Jonathan Vincene, Graham Kingl, Peter La/ and John Kinghorn2

J Intelligent Systems LaboratOJ)" Southampton Institute, UK; 2 Philips Semiconductors,
Southampton, UK

Abstract: Code reuse has always been an important area for reducing development time,
The component-based software development paradigm is becoming increasingly
important as a structured way of achieving effective code reuse, moving away
from the ad-hoc processes that have tended to be used in the past. However,
attention must be given to difficulties associated with testing a system
composed of (possibly third party) components whose intcrnal structure is not
visible to the system integrator. In general, it cannot be assumed that a
component will function as expected when exposed to a specific usage profile in
a particular target environment, which will usually differ from that used by the
component devcloper for testing purposes, It is unrealistic to expect non-trivial
components to be 100% defect free. A further complication arises when
components, possibly of different manufacture, must interact to meet the overall
requirements of the software system. To facilitate the construction of robust
component-based software systems, it is argued that a software component must
provide some form of test service that enables the verification of correct internal
functioning in the target environment, and supports the verification of
component interactions. This chapter describes an architecture that facilitates
such tests, and briefly outlines some of the test types that may be incorporated
into the component.

Key words: Software components, software test, built-in test

1. INTRODUCTION

This chapter examines an architecture for Built-In-Test for Run-Time
Testability (BIT-RTT) in software components, expanding and extending
previous work by Wang et al. [1], with specific attention paid to continuous

www.manaraa.com

84 Chapter 5

test and real-time systems. The current trend of increased usage of COTS
(Commercial Off-The-Shelf) components [2], typically supplied by
component vendors as binaries, imposes certain restrictions and difficulties on
the testing and verification of system correctness, because the internal
mechanisms of some or all system components will be unknown. Components
do not generally provide test facilities, and there are no standardised built-in
tests. The testability of systems constructed with COTS components is
therefore low, and whilst there are numerous approaches to improving the
reliability of a software product (including, amongst others, inspections and
formal methods), it is axiomatic that reliability is enhanced by appropriate
testing.

BIT seeks to address some of the difficulties associated with component
based development, by extending the traditional view of a component [3] to
incorporate techniques which facilitate test and verification when integrated
within a system, thereby raising the test visibility of COTS components.
There are two principal motivations for considering the use of BIT
mechanisms. First, with any non-trivial component there will be some non
zero probability of it containing residual defects not detected during the
component vendor's testing cycle. Second, a software system may rely on the
correct interaction of many COTS components, and issues of correct
component usage, dynamic behaviour and environmental considerations need
to be verified by the system integrator. The inclusion of testing facilities
within the component itself supports the detection and localisation of residual
defects which only manifest themselves at integration or deployment time,
and assist the system integrator in verifying correct component interactions.
Since the occurrence of error events typically depends upon the usage profile,
and usage varies with time, continuous verification of component and system
behaviour is advocated.

This chapter focuses on the architecture and primary interfaces of the BIT
approach. A discussion of the philosophy and implications for product quality
may be found in [4] and [5].

2. TESTABLE COMPONENTS

A component is defined by a number of provided and required interfaces,
through which its functionality is understood. The provided interfaces allow
external entities (clients) to access the services provided by the component,
whilst the required interfaces define services which the component needs in
order to function correctly. A standard component is therefore constructed
from a number of what will be referred to here as functional interfaces. In
general, a system developer is unable to look inside a component (and ideally
should not wish to do so). However, problems can arise in a system composed

www.manaraa.com

5. Intelfaces and Techniques for Runtime Testing 85

of COTS components when there is no provision for testing. The system
developer must be able to verify that the components used function correctly
in the specific target environment that the system is intended for. This is
likely to differ from the component developer's test environment(s). It must
also be verified that components interact correctly in order to meet the overall
system requirements. In particular, issues related to resource utilisation
(memory allocation, deadlock, etc.) can be complicated by the use of black
box components.

A BIT -component is composed of its normal functional interface(s),
augmented by one or more test interfaces (see Figure 1). The component
developer provides these interfaces to access built-in test services which can
support integration test and continuous verification.

BfT-component

Functional Interface

Test Interface

Figure I. Concept of a BIT component

Errors occurring in a component based system can be classified at two
levels; those that are confined to a specific component and can be detected by
built-in tests within that component, and those at system (or sub-system) level
arising from incorrect component interaction and cannot be detected within
the components. For example, data integrity can be verified within a
component, but deadlock, which is an example of a system level problem
caused by resource competition, cannot. Verification of system level
behaviours therefore requires external test components. The BIT interfaces
provide for both internal and external tests; the former by building tests into
the component, the latter by enabling information not normally visible to be
safely accessed by the external test components.

3. BIT ARCHITECTURE

The BIT architecture is based on the following architectural elements:
a) BIT-components: components which provide a number of built-in test

servIces.
b) Testers: components which use the test services of BIT -components to

determine whether a system-level error condition exists.

www.manaraa.com

86 Chapter 5

c) Handlers: components which handle errors detected by BIT
components or test components.

d) Constructors: a conceptual element, nominally responsible for the
instantiation of (high level) BIT -components, testers, and handlers, and
their interconnection.

The BIT architecture specifies a number of interfaces which BIT
components, testers, handlers and constructors must provide. In the case of
handlers and constructors, however, much is left to the system designer as
error processing is application specific and the method of system construction
(i.e. component instantiation and association) varies. The BIT approach does
not advocate the use of any particular component architecture, nor is it
confined to anyone implementation language. Only those aspects which must
be specified for compatibility are specified, leaving sufficient flexibility and
extensibility for wide application. This typically means the definition of
public interfaces, data types, and constants.

In general, information from the component can flow in two ways. First,
an external entity can access the information via functions of the appropriate
BIT interface, in a polling mode. Second, a callback mechanism can be
established, where appropriate, so that external entities are notified when
events of interest occur. At least one, and possibly both, modes of operation
are supported by each BIT interface. By convention, interfaces to test services
provided by a component are named IBITx, where x is the type of test catered
for. Where an external tester is involved, and communication is required from
component to tester, the corresponding interface on the tester is named
IBITxNott{y. As an example, to facilitate deadlock testing, components may
provide an IBITDeadlock interface. A deadlock tester provides the
IBITDeadlockNotttY interface, through which a component can notify the
tester of events of interest, in this case resource requests and releases (see
Figure 2). Similar relationships may exist between, for example, handlers and
BIT -components, and handlers and testers. There can be any number of test
interfaces, to address a wide variety of problems, including, but not limited to;
deadlock testing, timing verification and performance profiling, memory
management, code integrity, data integrity, and trace facilities.

www.manaraa.com

5. Intelfaces and Techniques for Runtime Testing

----------,
I
I
I
I
I

lBITx

Figure 2. IBITx and IBITxNotify interfaces

87

Whilst any number of test interfaces may be specified, four "primary"
interfaces are defined which form the foundation of the architecture. The
primary interfaces are:

a) IBITQuel)'." allows an external entity to query the availability of specific
test services and, if present, to acquire a handle to the corresponding
IBITx interface.

b) IBITError: provides the means for error propagation. The IBITError
interface can be queried to determine the error status, or can be
configured to notify a corresponding IBITErrorNot~fY interface of the
occurrence of specified error events.

c) IBITErrorNot~fY: provides a mechanism for error notification, as
typically provided by handlers so that they can be informed by BIT
components and testers when specified error events occur.

d) IBITRegister: provides the mechanism for associating BIT -components
with testers and handlers. The interface provides functions for notifying
the creation and destruction of BIT -components. Through this interface,
a system specific "constructor" can be created for the instantiation and
connection of BIT-components.

The full specification of these interfaces will not be given here but the
main concepts and important supporting functions will be discussed. Table 1

defines which interfaces are mandatory on which architectural elements. Note
that, since the IBITError interface supports polling as well as a callback
mechanism, IBITErrorNot~ is not mandatory, but would typically be
provided by most handlers. Note also that a BIT-component is defined as such
by the provision of the IBITQuelY interface - it does not have to provide any
other test facilities. Thus, compatibility with the BIT architecture is easily
achieved. The provision of a pair of corresponding interfaces, such as
IBITError and IBITErrorNotify, would be typical in a BIT environment, as

www.manaraa.com

88 Chapter 5

some flexibility is necessary in the way in which information is distributed.
Support for both polling and callback modes of operation (i.e. pulling and
pushing of data) offers the flexibility required to meet the demands of a wide
spectrum of application areas.

Element
BIT -component
Tester
Handler
Constructor

Table I. Mandatory BIT interfaces
IBITQuery IBITError IBITErrorNotiJY IBITRegister

3.1 BIT components

A BIT -component provides one or more test interfaces which allow access
to built-in test services. Test services are grouped into logical blocks, such as
data integrity test, code integrity tests, trace services, timing test, deadlock
test, etc. Such services are an optional part of a BIT -component. All BIT
components have a query interface, referred to as IBITQuelY, which allows
handlers, testers, and other external entities to determine which, if any, BIT
services are provided by the component. The main provision of IBITQuelY, is
a function named IBITQuery:: Quelylntel!ace, which allows the existence of
a particular BIT interface to be ascertained and, if present, the corresponding
handle to be acquired.

Typically, however, a BIT -component will include BIT services. If
internal error detection mechanisms are included, the BIT -component will
provide an IBITError interface, which enables errors to be propagated to
system level components with the responsibility for error handling. Two
modes of operation are supported by IBITError; polling and callback. Using
the IBITError :: QuelyErrorStatus function an external entity can determine
whether any errors have been detected within the component and of what
type. Alternatively, using the IBITError :: SetHandler function, a link can be
made between the IBITError interface and a corresponding IBITErrorNotifj'
interface (as typically provided by handlers). When an error of interest occurs,
the BIT-component informs the handler by calling its IBITErrorNotify ::
ErrorNotify function. In general, a BIT -component may be represented as in
Figure 3. Note that the BIT approach does not alter in any way the
component's "functional interface".

www.manaraa.com

5. Intelfaces and Techniquesfor Runtime Testing 89

(mandatorv)
~

IBITOuerv

IBITError

Figure 3. General structure of a BIT-component

3.2 Testers

Testers are separate components that are used to verify higher level
behaviours, for example, deadlock conditions, which arise from component
interaction and cannot therefore be verified within the components. Testers
interface with BIT -components, gaining handles to available IBITx interfaces
(i.e. interfaces to test services), via the IBITQuelylntelface which is provided
by all BIT-components. Like BIT-components, testers must provide an
IBITQuelylnteTface through which its other interfaces may be accessed.
Testers must also provide an IBITRegister interface. This defines two
functions; IBITRegister Not~fj'Creation and IBITRegister
Not~fYDestruction which are used to inform the tester of the creation of new
BIT -components and the destruction of existing BIT -components. A handle to
the corresponding BIT -component is passed as a parameter to these functions.
The tester can then access the IBITQuelY interface of a registered component
to ascertain the availability of test services and configure them as required
(see section 3.4).

Where a BIT -component is required to notify a tester of the occurrence of
particular test events, the tester will provide the BIT -component (via the
IBITx interface) with a handle to the corresponding IBITxNotW' interface. An
IBITxNotify interface is not specified if the IBITx interface only supports
polling for test information. If the IBITx interface supports both polling and
callback modes of operation (such as the IBITError interface) a tester mayor
may not then choose to include an IBITxNotifY interface, at the discretion of
the system designer. IBITxNotW' becomes a requirement when the only
supported mode is callback. Like BIT -components, a tester propagates errors
it detects to handlers or other interested parties via its IBITError interface,
which is a compulsory provision. Testers may, of course, have other

www.manaraa.com

90 Chapter 5

application specific interfaces that are not specified here. In general, a tester
component may be represented as in Figure 4.

(mandatorv)
,----A----...

3.3 Handlers

IBITError

(mandatorv)

A handler is a component with the responsibility for error processing. A
system may have any number of handlers dedicated to processing specific
error types, although one handler per system would be typical. Error
processing is not defined as part of the BIT approach, being considered
application specific. A handler provides three specified interfaces; optionally
IBITErrorNotifj, (if it wishes to use the callback mechanism of the IBITError
interface of associated BIT-components and testers) and compulsorily
IBITQuelY and IBITRegister. The latter provides two functions; IBITRegister
:: NotifyCreation and IBITRegister :: Not(/YDestruction which are used to
inform the handler of the creation of new BIT -components and the destruction
of existing BIT -components. The handler can then access the IBITQzlelY
interface of a registered component to ascertain the availability of test
services, configure these services, and configure error notification. In general,
a handler component may be represented as in Figure 5.

IBITOuerv

(mandatorv)

IB ITRe!!ister

(mandatorv)

Figure 5. Structure of a handler

www.manaraa.com

5. Inteljaces and Techniques for Runtime Testing 91

3.4 Constructor

The constructor is a conceptual entity and its general interfaces and
implementation are not specified as this may lead to a reduction in the scope
of applicability of the BIT technology. The constructor is nominally
responsible for notifying the testers and handlers of the creation and
destruction of BIT -components via their IBITRegister interface. In a simple
system this action might be hard-coded to occur at start-up. In a more
complex system this responsibility may require some centralised "component
factory" or may be distributed throughout. The method of system initialisation
and component instantiation is not prescribed here.

An important provision is made to support the development of a
component factory should an application require it. It cannot be assumed that
component instantiation is a high level activity; a system is generally
constructed in a hierarchical way, and a BIT-component may instantiate child
components. It is necessary to ensure that the system becomes aware of the
creation of these components. Therefore, when a BIT -component is created, it
is passed a handle to an IBITRegister interface. This handle will be stored by
the component and passed on to any child components. On creation, the BIT
component uses this handle to call the IBITRegister :: Notifj;Creation
function. The BIT -component will not be aware of the owner of this interface
- it could be a component factory, a tester, or a handler. The passing of this
handle is obligatory, but if the system designer does not wish to utilise this
mechanism, then a null handle can be provided instead.

As an example of how this facilitates component registration, consider the
following possible sequence of events. On start-up, the main thread of the
application instantiates a constructor component, which in turn creates the
necessary handlers and testers, maintaining handles to them in an internal
table. The constructor registers the testers with the handlers so that error
conditions can be propagated. The main thread then creates some initial BIT
components, passing each a handle to the constructor component's
IBITRegister interface. On creation, they call the IBITRegister ::
Notifj;Creatiol1 function and the constructor can then register them with the
appropriate testers and handlers listed in its internal table. The testers and
handlers receive notification of the creation of a new BIT -component and can
then detennine what test services are offered by the BIT -component via the
IBITQuel)i interface. Child components can then be safely created, and will be
automatically registered with the required testers and handlers. Figure 7 in
Section 4, illustrates this sequence of events. In simpler systems, where there
is, for example, just a handler and no external testers, the same mechanism
can be used to automate the registration of BIT -components with the handler,
by passing a handle to the handler's IBITRegister interface when BIT
components are created.

www.manaraa.com

4. EXAMPLE CONFIGURATION

Figure 6 illustrates an example BIT system configuration comprising three
BIT-components (one of which is a child of a higher level BIT-component)
with deadlock testing support, an external deadlock tester, a handler, and a
constructor, showing the interfaces involved (not all associations are shown
for clarity).

IBITQuery

--------------.,
---------1

IBITErrorNotiry I
I
I
I
I
I

I
I
I
I

Constructor

IBITRegister

--.,
L----r-----' I

I
I
I

IBITQuery

l ____ !:.r::.a!.e!... _____ _

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

IBITDeadlock

IBITQuery

mlTRegister

_____________ L ___________ _

Figure 6. Example system configuration

A representative series of component interactions is illustrated in Figure 7.
In this example, the constructor is implemented such that it creates the
system's initial (top-level) components, including handlers and testers. It
maintains an internal table of handles to the IBITRegister interfaces of
handlers and testers so that they can be notified of the creation of new BIT
components.

www.manaraa.com

5. Inteifaces and Techniques for Runtime Testing 93

Constructor I I Handler I I Tester I I BITCI I I BITC2 I I BITC3

"""" .. :
.. ootif)'creaUoo

"""" ..

..

qooy 00ldi0d< in~

. oonfi_oo.:nock~:

..

: :

: ronfi!-'Ure reacnock service l

.. notifyaeaticn

qwyerror_

...

configure dEadlcrl. service !

, ~ .. __ ~reoomre~~~~m~~
: :

. ~ ... ----------~--~~~~~~~~~
~: mnrceC\'ent : ~ .. .-------~----------~-=~~~~
f ~~ oo.:nockcmditioo •

Fail Safe

Figure 7. Sequence diagram of typical component interactions

www.manaraa.com

94 Chapter 5

On start-up, the constructor first creates the handler, passing it a handle to
the constructor's IBITRegister interface. The constructor is then called back
using the IBITRegister :: Notifj,Creation method which is passed a handle to
the handler's IBITQuelylntelface. This handle is stored by the constructor in
an internal table. The constructor then creates the deadlock tester in a similar
way, and when called back, it notifies the handler of the tester's creation. The
handler queries the tester for the presence of an IBITError interface (which it
has, being a compulsory provision on testers). Having acquired a handle to
this interface, the handler is able to configure it, using the IBITError ::
SetHandler function, so that the tester will notify the handler of error
conditions.

The constructor then creates BIT-components BITCl and BITC2, again
passing a handle to its IBITRegister interface. The handle is stored by each
BIT -component for future use. The constructor is then called back by the BIT
components, which then notifies the handler and tester of their creation (it
could have done this directly, but this provision is made primarily for
components lower in the hierarchy). In this example, the BIT-components
only support deadlock testing and consequently have no IBITError interface.
The handler therefore ignores them. The tester, however, queries their
services via the IBITQuelY interface and confinns the presence of
IBITDeadlock interfaces (the only interface of interest to this particular type
of tester). Their deadlock interfaces are then configured to notify the tester of
resource related events, such as resource allocation and release, via the tester's
IBITDeadlockNot(fy interface.

Whilst the communication between the constructor and the initial (high
level) components that it creates might at first seem excessive or unnecessary,
using this generalised method of component creation automates the
registration process, ensuring that all system level components are aware of
the existence of new BIT-components not created directly by the constructor.
In this example, BITC2 creates a child component, BITC3, passing the handle
stored when BITC2 was created. BITC3 uses this to notify the constructor of
its creation, which then proceeds, as before, to notify the tester and handler of
the existence of this new component. In this example, the handler does not
find an IBITError interface, but the tester finds an IBITDeadlock interface and
configures it as previously described.

During execution, resource related events are notified to the deadlock
tester, which responds to each event by constructing and reducing a Resource
Allocation Graph [6] to detennine whether a deadlock condition exists. When
this occurs, the handler is notified of the error via the IBITErrorNot(fjl
interface. The handler can then take whatever application specific error
processing is required. This example shows a number of resource
notifications, and the subsequent identification and handling of an error event
by fail safe.

www.manaraa.com

5. Intelfaces and Techniques for Runtime Testing 95

Although not shown in this example, destruction of a component must be
handled properly. Specifically, a component cannot be destroyed before all
handles to it are freed. The BIT architecture does not specify the mechanism
for this, as it may be specified by the component model. The IUnknown
interface in Microsoft's Component Object Model (COM), for example, uses
the AddRef and Release methods to maintain an internal count of the number
of references to its interfaces. When this count reaches zero, the component is
destroyed. The BIT architecture provides the IBITRegister
NotifYDestruction method to assist in safe termination. When a constructor,
handler or tester receives this notification, all internal references to the
specified component must be deleted.

5. TEST SERVICES

The previous sections have described the BIT architecture, mechanisms
for construction and error propagation, and briefly outlined the four primary
interfaces. In this section, a number of possible test services are outlined. The
provision of an IBITError interface enables errors detected within a BIT
component to be propagated to a handler or other interested component. The
component developer may simply instrument the functional code of the
component with various tests for, for example, pointer validation, correct
completion of operations, I/O errors, etc. However, it is more convenient from
a reuse point-of-view if such tests are logically grouped into services that can
be included in the BIT-component as required. Testerslhandlers would gain
access to these services via the IBITQuelY :: QueryIntelface function, whilst
internally these services can provide helper functions to the component to
speed development.

5.1 User conformance testing

User Conformance Testing is concerned with verifying that the system is
using the component appropriately. This involves the validation of parameters
for API errors, to ensure that requested operations are valid in the context of
the current component state.

5.2 Code integrity

Software is static in nature - once compiled a software component cannot
change. However, software can be corrupted in a system due to a variety of
reasons such as copying errors when the software is loaded into RAM for
execution (note that although many embedded systems traditionally execute
from ROM, many now execute from RAM for speed reasons) or corruption

www.manaraa.com

96 Chapter 5

due to programming and data errors. Many systems do not employ virtual
memory where processes are kept physically separate. Therefore, software
can be corrupted by other processes manipulating memory outside of their
allocated address space. Error detection codes such as a checksum or CRC
(Cyclic Redundancy Code) can be used to verify the code integrity at run
time. Such verification could be invoked periodically by the component itself,
or instigated by an external entity via the corresponding test interface. In
practice, this facility is likely to be most appropriate for embedded systems.

5.3 Data integrity

Two approaches to data integrity are considered. First, a checksum (or
other error detection code) can be used to determine whether a set of data
items has been corrupted by unauthorised access of the component's data
space. On initialisation, the checksum of the data items is computed and
stored. After each genuine operation on this data, the checksum is recomputed
and the stored value updated. At any time, the integrity of the data can be
verified by recomputing the checksum and comparing with the stored value.

Second, it is often the case that some relationship between data items can
be defined and verified. This relationship is dependent on the specification
and implementation of the component and can only be specified by the
component developer. Examples include, checking correct linkage in linked
lists, verifying that node data meets the constraints in binary trees, verifying
that the result of a sort operation is sorted data, and verifying the consistency
of internal state machines.

5.4 Deadlock

Deadlock is a system level problem arising from resource competition and
mutual exclusion. Detection of a deadlock condition necessitates the use of an
external deadlock tester, as previously described. The tester, when informed
of the creation of a BIT -component, ascertains whether that component can
provide resource and thread information. Assuming it can, the deadlock
interface is configured to notify the tester of resource related events. The
tester can determine whether a deadlock condition exists by constructing and
reducing a Resource Allocation Graph.

5.5 Timing

In real-time systems, the correctness of a computation depends not only
upon the value of the result, but also its timeliness. Even in non-real-time
systems, there are often overall quality-of-service levels that must be met.
Whilst it is possible, under certain restrictive conditions, to analytically

www.manaraa.com

5. Intelfaces and Techniques for Runtime Testing 97

detennine system schedulability (using, for example, Rate Monotonic
Analysis [7]), a system constructed from COTS software components is
unlikely to provide sufficient infonnation to do so. Further, the results of such
analysis are often too conservative for practical use. Under these
circumstances, it is desirable to build-in support for timing verification.

Note that the knowledge of deadlines may reside at one of two levels;
internally, the component may have certain intrinsic timing requirements of
which the system integrator is not fully aware, whilst many time critical
processing tasks can be expected to involve many components, and therefore
the deadline is known only at system level. The use of a timing tester
component may therefore be required to handle notification of event start and
finish times, verification of results, and notification of discrepancies to the
handler. Support for timing test is also an important part of the code
optimisation process.

5.6 Detection of residual defects

In non-trivial components it is not generally possible to verify that the
code is 100% defect free. Typical causes of problems that show up after
extended periods of execution include invalid pointers, memory allocation /
deallocation, arithmetic errors (including accumulated floating-point errors),
out of bounds array indices, corrupt data structures, errors in untested or
untestable code, exit conditions of recursive algorithms, type conversions,
unexpected/untested input, logical errors (especially in conditional
expressions), timing errors, and optimisation errors. Such defects may cause
anything from complete system failure to minor data loss or perfonnance
degradation, and the defect may not appear as a fault for some considerable
time after the initiating event. In order to improve the quality and
maintainability of software systems and the contained components, it is
necessary to improve the detection rate of residual defects, and provide
sufficient diagnostic output to enable remedial action to be taken. Residual
defects are generally detected by the inclusion of assertions and consistency
checks within the nonnal executable code of the component, providing
continuous verification of program behaviour. Such checks examine, for
example, consistency of component state and data structures, numeric results,
program output, bounds, etc. Analysing design models, such as state
transition diagrams, will infonn the design of suitable tests.

5.7 Trace

Incorporating BIT services into a software component is expected to
improve the error detection rate of both component and system. However,
knowing that an error has occurred is not particularly helpful from a

www.manaraa.com

98 Chapter 5

maintenance perspective. Including tracing facilities within the component
allows infonnation about, for example, operations invoked, values of data
items, messages received, interrupt events, etc. to be recorded for later use in
assisting the localisation of a defect. This is a similar provision to that
provided by many development environments, with the exception that this
trace is pennanently available within the component, to be enabled and
disabled as the situation requires. It can be used during system test or can be
enabled throughout the component/system lifetime. Typically, trace messages
will be stored in a fixed size buffer, to be recorded onto pennanent storage
when an error condition of interest has occurred. In effect, this is the software
equivalent of a logic analyser.

6. CONCLUSIONS

This chapter has outlined a generic architecture for implementing built-in
test in software components, as an extension to traditional component
technology. The architecture provides a flexible method of system
confi.!:,'Uration and error propagation within a component based environment.
Component based development, whilst having great potential for reuse, is
complicated by the lack of test visibility currently provided. It is suggested
that the approach described can address many of the difficulties associated
with component-based development, which arise from encapsulation and
infonnation hiding.

With the continuing expansion of the component-based software
development paradigm, raising test visibility and confidence in vendors'
components is of increasing importance. Whilst it is generally accepted that
unit testing is a particularly cost effective stage at which to test traditional
software, due to the potentially significant differences between a vendor's test
environment / usage profile and that of the user, and the necessity to carefully
examine component interactions, the component-based paradigm requires that
testing effort be partially relocated towards the software integration phase.
The development of a BIT technology, which can be readily incorporated into
COTS components, enables test visibility to be raised. It is suggested that this
approach may provide the basis for the construction of more testable, reliable,
maintainable and generally higher quality component-based software systems,
offering potential benefits to component vendors, system integrators, and end
customers alike. The standardisation of the architecture and interfaces is seen
as a key factor in enabling built-in-test within the COTS market, and is an
area of ongoing work.

www.manaraa.com

5. Intelfaces and Techniquesfor Runtime Testing 99

ACKNOWLEDGEMENTS

This work is partially funded by the BC 1ST 5th Framework Project,
ComponenH. The contribution of the ComponenH consortium is gratefully
acknowledged.

FURTHER INFORMATION

Further information, including the latest documentation, can be found at
the ComponenH web site: www.component-plus.org

REFERENCES

[I] Wang Y, King G, Patel D, Court I, Staples G, Ross M, Patel S, On built-in test and reuse in
object-oriented programming, ACM Software Engineering Notes, 23(4), pp60-64.

[2] ArifGhafoor S, Paul R, Software engineering metrics for COTS-based systems, IEEE
Computer, May 2001, pp91-95.

[3] Szyperski C, Component software beyond object-oriented programming, Addison-Wesley,
1998.

[4] Vincent J, King G, Built-In-Test for Run-Time-Testability in Software Components:
Testing Architecture, Software Quality Management, British Computer Society, 2002.

[5] Vincent J, King G, Built-In-Test for Run-Time-Testability in Software Components:
Product Quality Implications, Software Quality Management, British Computer Society,
2002.

[6] Bacon J, Concurrent systems, operating systems, database and distributed systems: an
integrated approach, 2nd edition, Addison-Wesley, 1998.

[7] Liu C, Layland J, Scheduling algorithms for multiprogramming in a hard real-time
environment, Journal of the Association for Computing Machinery, 1973.

www.manaraa.com

Chapter 6

The NEPTUNE Technology to Verify
Document Software Components

and to

Juan Carlos Cruellas', Jean-Paul Bodeveix2, Thierry Millan2 and Agusti
Canals3

J Upc. Spain; clRIT, Toulouse, France; 3CS, Toulouse, France

Abstract: The main objective of the NEPTUNE project (Nice Environment with a Process
and Tools Using Norms and Example) is to develop both a method and tools
(complementary to the existing software environments) based on the use of the
UML notation, This method, gained from considerable experience in the
industrial environment, will apply to a variety of different fields: software
development, business processes and knowledge management. The newly
developed tools will enable static check ofUML models for their coherence,
They will also enable generation of professional documentation resulting from
the transformation of models. This will be compliant with the context of the
UML notation and will take into account user's requirements. The method and
tools developed in this way will facilitate the application of the UML standard
as well as promoting its use in a large number of varied fields.

Key words: Methodology, rules checking" documentation, tools, UML

1. INTRODUCTION

The UML notation supports a great part of the lifetime of software
components or applications starting from requirements analysis down to the
detailed design. It is object-oriented from the preliminary phases of the
development and thus departs from classical design and analysis methods.

UML defines the semantics and the notation of the concepts used for
software components design and component interaction, the way in which
these concepts can be applied, the views and document types that can be

www.manaraa.com

102 Chapter 6

realized. A standardized methodology for UML does not exist. However,
different methodologies are used in the UML context: Catalysis, Unified
Process, Objectory, etc.

After its adoption as a standard, UML is increasingly used for the
construction of design and analysis models of software systems, business
processes, knowledge engineering, etc. Application domains being
increasingly multidisciplinary, each partner of a design team describes its own
view of the components. The UML notation, through its support for multiple
views, helps in this collaboration. It is also justified by the ever-increasing
number of models built using UML and by the reusability extension
throughout all levels: patterns, architectures, models, and components.

Although the formalisms used in UML support model checking better than
the formalisms used in any other heuristic design and analysis methods,
neither UML, nor the methodologies describing their use refer to this
possibility.

Currently, the verifications mentioned above are perfonned at the level of
development environments, during code compilation, and application
debugging and testing, that is to say in the last stages of software
development. This situation exhibits at least two major drawbacks:
propagation of errors introduced in the early development stages and
impossibility of checking models for which there is no code generation such
as organizational models, for example.

The aim of the NEPTUNE project is to provide process guidelines for
building software components, and tools for checking UML diagrams and
generating documentation. The process guidelines are dedicated to different
business lines. The objective is to provide the users with guidelines that
facilitate the management of projects with UML. The tool for checking UML
diagrams supports co-operative design in different environments, and ensures
coherence of multiple views. The tool for generating documentation gives the
capability to generate information and to organize this information from
different points of views, which complement the different diagrams already
designed in the case tools.

2. NEPTUNE ARCHITECTURE

The NEPTUNE architecture is based on the use of three standardized
technologies: XMI (XML Metadata Interchange standardized by OMG), XSL
(eXtensible Stylesheet Language) and OCL (Object Constraint Language).
XMI is a format depicted in XML (eXtensible Markup Language) applied to
the UML meta-model to allow interchange of models. The different UML
case-tool editors currently support this format. XSL is a powerful language to
manage structured infonnation expressed in XML. This language is used to

www.manaraa.com

6. The NEPTUNE Technology 103

construct style sheets containing both formatting vocabulary, such as HTML,
and expressions of structured language. Applying XSL style sheets on
different XMI expressions of UML models gives the user the capability to
obtain well-defined documentation. OCL is the standardized part of the UML
language devoted to the expression of constraints on UML class schemas.
This language permits the expression of properties, which cannot be
represented graphically.

Three modules compose the NEPTUNE architecture. The first one
transforms a XMI file of the UML representation into an internal form. An
API provides the operations necessary to access the different elements of the
internal form. The aim of this API and of the internal representation is to
provide the functionality necessary for the checker and the document
generator, regardless of the tool used for the edition of UML diagrams. The
two other modules are the checker and the document generator. The checker
applies rules on the UML model within the internal form. These rules are
expressed in OCL+ and are applied at the meta-model level. OCL+ is an
extension of OCL including temporal logic operators and transitive closure
computation. The document generator uses the XSL language to extract and
transform the information presented in the UML model into information
readable by people not familiar with UML notation. Figure 1 summarizes the
global architecture of the NEPTUNE tools specifying the inputs/outputs. In
particular, it shows that the API loads the XMI file and provides the UML
elements required by the checker and the document generator. The checker
provides warning and error messages as an output. The documentation
generator produces XML, HTML and PDF documents.

NEPTUNE API conforms
to UML 1.4

Checker Document
Generator

Figure 1. Global architecture of Neptune

www.manaraa.com

104 Chapter 6

3. OVERVIEW OF THE NEPTUNE METHOD

The UMLINEPTUNE process provides guidelines for Business Process,
Knowledge Management and Software Engineering modeling. This process is
divided in phases, and each phase is composed of activities. In this section,
we will present an overview of the various phases for the Software
Engineering domain (see Figure 2).

The Unified Process proposed by the original designers ofUML includes a
"Design and analysis" part. Our process is an operational instance of this part
for the industrial context. The process is naturally iterative, but we choose to
represent it sequentially for easier reading.

This process proposes packages and diagrams for each phase (see the
browser architecture).

REQUIREMENTS
ANALYSIS

OBJECT
ANALYSIS

ARCHITECTIJRAL
DESIGN

OBJECT
DESIGN

. ~ Physical architecture
description

[
1I<l~: ==MM=I c1a=ss des=ign~
L::J DB class design

, _________________

PHYSICAL DESIGN

Figure 2. Software engineering phases

www.manaraa.com

6. The NEPTUNE Technology 105

3.1 Requirements Analysis

The main goal of this phase is to fonnalize the user needs detailed in a
requirements analysis document using UML.

This phase is composed of the following activities:
1. Activity A: Actors and external entities definition, carried out by use case

diagrams called Actors General View (1) and External Entities General
View (2);

2. Activity B: Definition of the passive context (collaboration between the
external entities and the modeled system), carried out by interaction
diagrams called External Entities Dynamic Data Flow (3) and External
Entities Static Data Flow (4);

3. Activity C: This is decomposed in three steps:
Definition of Use Cases, performed by:

defining the use cases and adding them into the Use Case General
View (5),

- describing the use cases (collaboration between the Actors and the
modeled system) using interaction, activities, and class diagrams (8).

- Creation of a Data Flow General View (6) diagram that shows all the
interactions between the system and all the actors and external entities.

- Domain Analysis, carried out by at least a class diagram called Domain
Classes (7).

3.2 Object Analysis

The main goal of this phase is to produce the first logical organization
(package organization) of the classes found during the first phase and to
complete these classes by adding attributes, inheritance, etc.

This phase is composed by Activity D: Produce for each Use Case of a
class diagram called by the Use Case name, i.e.: FirstUseCase (8). This
diagram contains all the classes identified in the sequence diagrams that
describe the Use Case. Organise these classes into a set of packages. For each
package, create a class diagram called by the package name, i.e.:
"ThirdDesignPackage" (9).

Note that, if necessary, create activity and state diagrams for the classes'
behavior modeling.

3.3 Architectural Design

The main goal of this phase is to produce the first architectural view of the
modeled system. In this phase, the analysis packages become logical
components. Note: Thefirst logical organization could be changed here if the

www.manaraa.com

106 Chapter 6

designers consider that the logical organization does not respect the design
constraints.

This phase is composed by the next activities:
1. Activity E: The dependencies between the identified packages are

presented in the Package General View (10) diagram, then the packages'
interface classes are identified and the packages collaboration is presented
in the Package Collaboration General View diagram (11).

2. Activity F: For each package, add or modify classes (by addition of
methods or attributes) (9). Ifnecessary, add activity or state diagrams
describing the collaboration between these classes.

3. Activities G and H: Modify the package diagrams by the addition of
design components or the application of design patterns.

3.4 Object Design

The main goal of this phase (for each package) is to produce the detailed
architectural organization (complete classes, attributes, methods, diagrams,
etc; find new classes, new packages, etc.) to achieve the package description
started in the activity F.

This phase is composed of the following activities:
1. Activity I: Upgrade the contents of each existing diagram.
2. Activity J: Create the man-machine interface packages and description

diagrams.
3. Activity K: Create the database interface packages and description

diagrams.

3.5 Physical Design

The main goal of this phase is to produce the physical architecture. For
that, one has to design nodes and processes, and describe their collaboration.

This phase is composed of the following activities:
1. Activity a: Creation of hardware component (nodes and devices)

deployment diagram (12).
2. Activity ~: Processes identification and their affectation to the nodes of

the deployment diagram. Identification of the collaboration between the
processes in a diagram called Process Collaboration General VierI' (13).

3. Activity y: Identification of components (from our design or from existing
frame works) and their affectation of them to the processes in the Process
General View diagram (14). Allocation of the classes to the components
(one or more classes by component).

www.manaraa.com

6. The NEPTUNE Technology 107

1lI~~T~ III :.l:~D~
l;;CJ Use Care v_ liJCJ UreCaseView

.::: CJ «Actor» Actors dCJ LOgicalView
~JJ Actors General View CD E: CJ Ana~sts CIasse$

.::: ,f!:, FilstP.ctor lm An~sis Classes
~, FirstAdourrrn ~ Associations

:tl ,f!:, S econdClctor P' CJ D olMn Classes
~ Associations lit. Domain C!asses

6 CJ «Class}) Analysis Classes EJ FilstDomarnClass (FirstDoffiamClass)
'It An~is Classes ~ Associations
'~ F~stAnalysisC1ass :+. CJ FirstDe$ingP ackage
~ Associations ,. CJ SecondDesignPackage

F; CJ «C!asS}) Domain Classes r= CJ ThildDeslfogPackage
~! Domain Classes (j) It, ThirdDesingPackage ®
EJ FutDomainCIass EJ FirstAnal).'sisClass (FK$tAnal~sisOass)
~ Associations -.<> UhirdDeslngPad,age [Uh,rdDeslngPackage 1

CJ «Actor» Exterriat Entities roe) ThirdDesingPackagexml
!JJ Eidernal Enltlies General View CD ~ Associations
~ External Entities D}'f'Iilffiic Data Flo~ is] PaCKage General View @
:t E>:Iernal Entitles Static Data Flow <V m Package Collaboration Get)eralVIi~w @

~,,1 EJ «External EnId)')} FirstExtemalEntily m Process CoUaboratlon General View @
~ F,rslExternalEntityxml ~ Associations

:±! ~ «External Enid).'}} SecondExlernalEntity ::'1 CJ CorrponentView
~ ASSOCIations [Q Process General View ®

~ .. ~. Use Case General View <D !{].' FirstAnalJ'SIsClass
ill, Data Flow Genelal VieW ® !(] FlrsiDomainClass
e3 «Systilffi» MyTooi !{] FirstFDPCl.ass

B 0 FirslUseCase !J FlrstProcess
]I; FlstUseCase !{] FirstSDPCl<m
~ FilstUseCase ® !(] LFustDesingPackage
roe) FitstUseCase.){fll1 !{] I_SecondDesigl'lPackage

if 0 SecondUseCase !{] UhirdDesingPackage
~ Associations !J SecondProcess

±! D lOgicalV,ew " Depl~menlView @
LE CJ Component View @21 Model Properties
~ Deployment View

'@2I Model Properties

Figure 3, View of the instrumented browser structure

4. NEPTUNE TOOLS: DESCRIPTION AND USAGE

We present here the Neptune tools as well as their characteristics and their
usage.

4.1 The Checker

The UML notation includes a constraint language (OCL) whose purpose is
to express properties over a model that cannot be specified graphically. OCL
is mainly based on first-order logic and model navigation expressions.
Constraints expressed in OCL can be used in different contexts: within a

www.manaraa.com

108 Chapter 6

class, they express class invariants; within an operation, they express pre- and
post-conditions. OCL expressions are also used to specify guards of
transitions. The upcoming version 2.0 of UML proposes an extension of OCL
contexts to actions, therefore allowing the specification of properties over
behavioral features: it is possible to declare which messages can be sent
within a given operation. The NEPTUNE project has also made its own
proposals of extension, namely the capability to compute transitive closures of
navigation expressions and to specify temporal properties of dynamic
diagrams.

The verification of OCL constraints is in general not possible statically
during the design and the analysis. For example, a class invariant can only be
checked at run-time when exiting from an operation of the class.
Consequently, even if this technique is not widely available now, OCL
constraints can only be translated into Boolean expressions and inserted into
the code generated from the user model.

However, UML class diagrams can also be used as a meta-language (i.e. a
natural or formal language used to describe another language) to define the
abstract syntax of the UML notation itself. Meta-class invariants expressed as
OCL formulas must now be verified on UML models, which are made of the
finite set of modeling elements, contained in the UML diagrams. Verifying
that a model satisfies an OCL constraint becomes now decidable and this is
the purpose of the NEPTUNE checker.

Consequently, the purpose of the checking tool developed in NEPTUNE is
twofold:

Verify the well-formedness ofOCL constraints introduced at the
application level;
Check that an UML model satisfies the OCL constraints defined at the
meta-level.
This second point enlightens another objective of NEPTUNE. The ability

to check meta-level constraints over application level models makes it
possible to check UML well-formedness rules as well as methodological rules
as soon as they can be expressed as constraints over the UML meta-model.

4.1.1 Tool Description

As described in Figure 4, the OCL checker takes as input a database of
OCL rules, together with the UML metamodel and a user model. Both models
are stored in XMI files whose DTDs are compatible with version 1.4 of UML.
It returns diagnostic information indicating which rules are syntactically or
semantically incorrect, and the model element on which rules fail. As most
current tools only export UML 1.3, some transformation must be applied to
their output XMI so that it becomes compatible with UML 1.4. This
transformation is performed using an XSL T processor. XMI files are then

www.manaraa.com

6. The NEPTUNE Technology 109

parsed and transformed into an internal form that is accessed by the checker
through an API compatible with UML 1.4.

Model
UML 1.3

XMI 1.1 file

XSL
Transfor
mation

Model
UML 1.4

XMI-Parser API

Figure 4. Checking process

The checker loads the metamodel and uses it to validate and compile the
OeL rules. The model is then loaded and traversed so that each model
element is made an instance of its associated meta-class.

4.1.2 Checking Rules

This section presents a classification of the OeL constraints verified by
the NEPTUNE checker. As previously mentioned, they can be split into two
subsets: rules attached to meta-level classes and constraining the structure of
every UML model and, rules included in a user model and constraining the
implementation of the model.

4.1.2.1 Meta-model Level Rules
The starting point for the specification of this set of rules is the UML

semantics document. It uses the OeL language to formalize constraints over
meta-model instances. We have enriched this first set of well-formedness
rules by including inter-diagram coherence rules, software engineering rules,
target language rules, and business process rules, i.e. a description of a set of
related activities that, when correctly performed, will satisfy an explicit
business goal.

Well-formedness rules: Most of the rules, appearing in the UML
semantics reference document, are intra-diagram rules. They add structural
constraints over model diagrams that cannot be expressed graphically at
the meta-model level.
Inter-diagram coherence rules: Inter-diagram rules require checking
properties between at least two different kinds of diagrams. They are in

www.manaraa.com

110 Chapter 6

general not specified in the UML semantics document and may depend on
the UML methodology. Inter-diagram rules include type-checking rules
that require verification of method calls encapsulated in messages relative
to the class contents and the inheritance hierarchy. At the object level, the
number of links between objects in a collaboration diagram must conform
to the multiplicity declaration of the corresponding associations. Sequence
diagrams describing possible execution traces can also be checked against
state-transition diagrams describing all possible execution paths.
Target language oriented rules: Target language rules are rules that
require checking properties dependant on the target language chosen for
the implementation. For example, one can check the Java requirement
disallowing multiple inheritance of classes. Such rules must be grouped in
some package and conditionally checked.
Software engineering rules: They address the verification of properties
that depend on the methodological process imposed to develop an
application and on metric constraints defining modeling rules. The first
point concerns the definition of rules applicable at the end of each phase of
a development. They are defined in accordance with the NEPTUNE
process and concern, for example, the way that external actors must be
specified and their interaction with the system. The second point is more
project dependent and can express naming conventions, size limitations for
classes or packages, etc.
Business process rules: Business process methodology is well integrated
into the software engineering methodology and thus requirements
concerning design and analysis phases are mostly similar. The business
process design relies on methodological rules, which describe the mapping
of business concepts into the UML notation. The E-P business extensions
have a stereotyped note for defining rules. The note is stereotyped
«business rule» and is attached with a dashed line to the model element
(class, operation, etc.) to which it applies. Three categories of business
rules are extracted:

Derivation rules define how information in one form may be
transformed into another form, or how to derive some information from
another piece of information.

- Constraints govern the structure and the behaviour of objects or
processes, i.e., the way objects are related to each other or the way
object or process changes may occur.
Existence governs when a specific object may exist - usually inherent
in the class model.

4.1.2.2 Model Level Rules
Model level rules are defined by the application designer and are

associated to user-level model elements in order to constrain the application

www.manaraa.com

6. The NEPTUNE Technology III

code. The model element to which a rule applies is called its context and can
be a class, a method, or a dynamic diagram. The different kind of rules are:

Class invariant and operations pre/post conditions: This usage of OCL
constraints is already allowed by UML. The NEPTUNE tool only checks
their syntax and semantics. A more extensive static checking would
require proof techniques;
Action clauses proposed by UMLIOCL 2.0: They offer the capability to
specify which messages can be sent by an operation, thus allowing some
kind of verifications over dynamic diagrams. However, such verification is
limited to a one step transition. The current version of NEPTUNE checker
only verifies the semantics' correctness of these rules;
Temporal constraints over dynamic diagrams: The NEPTUNE tool
introduces the ability to specify temporal properties over dynamic
diagrams through an extension of the OCL language. Temporal operators
are borrowed from the Computational Tree Logic (CTL) and applied to
sequence and state/transition diagrams. In the first case, properties over the
occurrences of specific messages are asserted. In the second case,
properties concern the state of the current object.

4.1.3 Tool Usage

The NEPTUNE user has to define the set of model elements and the set of
OCL rules he/she wants to apply to the model elements.

Model elements are selected either from the meta-model browser or from
the model browser. In the first case, the NEPTUNE user can select all the
classes of the model while in the second case he/she can select all the classes
of a given package of the model.

The NEPTUNE user selects rules by choosing a subset of the rules
database identified by a keyword. These subsets correspond to the rules
categories presented in Section 4.1.2 and to the different phases of the
NEPTUNE methodology. Such a subset can be further restricted selecting
rules individually. Different subsets can be merged to define a new subset that
can be named and reused later. The user can also define his own set of rules
using the rule editor.

Once the set of model elements and the set of rules have been determined,
the checker is launched. It produces a diagnostic showing, for each violated
rule, the model elements that do not respect it. To help the navigation within
this result file, paths leading to failing model elements are enlightened in the
model and meta-model browsers.

Figure 5 summarizes the use of the NEPTUNE checker.

www.manaraa.com

112 Chapter 6

Keywords

Keyword selection

Model selection Model

------+--~,
~-----I

Meta-model selection

Figure 5. NEPTUNE checker general use

4.2 The Document Generator

browser

Meta-model
browser

We provide here a description of the document generator and how to use
it.

4.2.1 Tool Description

With the emergence of UML as a standard in software development,
software projects are now very often based on this technology. This statement
is true in many business fields, like software engineering of course, but also
for knowledge management or business process. Although all the participants
in a software-engineering project may be able to read and understand an UML
model, this does not necessarily happen with people in other domains. Thus, it
is useful to transform the information contained in a UML model into
different representations, easier to read for someone not necessarily being
fully skilled in UML.

The main objective of the document generator is thus the production of
professional documentation that results from the exploitation of UML model
atomic parts, to whatever business field they are related. This documentation
is an end-user-oriented documentation, which takes into account the
professi onal expertise of the reader.

The principle of generation is based on a model-correlated interpretation
of documentary elements. A documentary element specifies the type of

www.manaraa.com

6. The NEPTUNE Technology 113

information to extract from the model and the kind of transformation to be
applied on it.

Each documentary element will be processed to generate a small part of
the final document.

Grouped together, they build up a template, called shape in the NEPTUNE
context.

For each business field, we have identified a set of standard documents.
An example is the validation plan for software engineering. The tool provides
one shape for each of these typical documents. Each of them can be applied
on a UML model, in order to generate the appropriate document.

NEPTUNE also takes into consideration the specificity of each project.
Thus, the documentation designer can create new shapes, totally independent
from the ones aforementioned, fully dedicated to the UML model to be
documented.

Moreover, if the set of transformations available in NEPTUNE does not
exactly fit the user needs, they can write their own transformations.

An additional feature of the generator consists in its ability to deal with
external documentation. In other words, the NEPTUNE user can add to a
shape several references to external documentation. Of course, the only
transformations handling these external pieces of documentation are the ones
that have been designed to do so.

The technologies involved in the process are XMI for the UML model,
XML for the documentation, and XSL for the transformation aspects.

www.manaraa.com

114 Chapter 6

4.2.2 Tool Usage

MetaModel model
browser

Design Zone

transformer

PDF, HTML

Figure 6. The document generator usage

The NEPTUNE user has first to define the aspect of the documentation
they want to produce. This is done through the selection of a standard shape,
or through the creation of a new one, called user shape.

The shape is built up in the design zone and can be stored at any time. A
shape is composed of both structure and contents information. Regarding the
rendering of the structure (titles, sub-titles), a style menu offers a selection of
fonts, polices, sizes, etc.

Concerning the contents, each paragraph of the final documentation is the
output of a transformation performed on a part of the UML model (diagram,
class, etc). Each atomic part of the model can be selected with the model
browser. For systematic treatment (over all classes for example), the
documentation designer can use the UML browser in which all UML notions
appear.

The transfonnations aim to tum into textual, business dedicated and user
friendly form, a specific semantic information extracted from the model. Once
the shape is selected or customized, the next step consists in feeding the
generator with both this shape and the UML model to be documented. The
output of the generator is the final document in XML format.

The last feature of NEPTUNE document generator is the format
transformer. Through choice of the documentation designer, this feature is

www.manaraa.com

6. The NEPTUNE Technology 115

able to turn the XML document previously produced into another format. It
can be either RTF, PDF, or HTML.

4.2.3 Documentation Shapes and Transformations

In order to describe the final documentation, the user designs a shape,
which contains two kinds of information:

the hierarchical structure of the document,
- the contents of the document.

4.2.3.1 Hierarchical Structure
The structure of the shape is tree-based. Leaves of this tree represent the

contents of the documentation, while nodes describe its organization. In the
final document, the nodes will be the titles of the chapters and subchapters,
while the leaves will contain the text, the tables and all kind of information
the user wants to show. While creating a shape, the user can add new
descendant nodes to any already existing node. Figure 7 shows an example of
a simple shape structure and its result in the documentation.

Shape

Analysis document

1. Actors
1.1. Actors list

List of the actors

1.2. Use case
List of the use cases

2. Classes
List of the classes

Final document

Figure 7. Example of shape structure

4.2.3.2 Content
As said above, the leaves of a shape contain the information needed to

generate the corresponding part of the final document. Each leaf is a
documentary element that consists of:

an XSL transformation;
some UML model element targets;
links to XML external documentation.

www.manaraa.com

116 Chapter 6

NEPTUNE extracts infonnation from an XMI-fonnat UML model by
using XSL transfonnations. The final document pal1 associated with a leaf is
obtained by applying the transformation on the XMI model, using model
element targets and external documentation.

For instance, a transfonnation could, given an actor, retrieve all the use
cases associated with this actor.

NEPTUNE will come with a set of predefined transfonnations, but the
user can design his own transfonnations, tailored to his needs.

4.2.4 Example

For the software engineering domain, NEPTUNE can generate three
specific documents from a UML model:

the Design Analysis document that converts the UML Model into a
document understandable by anyone,
the Validation Plan based on the model, that defines the validation tests
that should be performed to test the software application.
the Interface Manual, that describes the interfaces of the modeled software
with much more accuracy than needed for the Design Analysis document.
In this context, we show how we generate a validation plan from a UML

model with the NEPTUNE tool.
First, we have to specify that UMLINEPTUNE process recommends that

each use case should be documented in a textual fonn, respecting the
following categories:

Table 1 Use case description
Summary Brief presentation of a use case
Use context Conditions of use by triggering elements

(frequency of activation, synchronous or
asynchronous triggering, etc.)

Triggering element Actor or use case
Pre-conditions Stable system condition necessary before use

case can be accomplished
Input data Data used
Description Detailed description of interaction between

triggering elements and the system
Post-conditions Stable condition achieved by the system at the

end of the interaction with a use case
Output data Data produced
Exceptions Error condition that the system cannot resolve

Next, for us a "validation plan" is composed of "validation cases" that
contain "test cases". A "validation case" corresponds to one "use case" from
the UML model. A "test case" is a sequence of scenarios. An "execution case"
is an execution for a particular scenario. So there is at least as many

www.manaraa.com

6. The NEPTUNE Technology 117

"validation cases" as "use cases". For each one, there is at least a set of "tests
sequences". Each test is described in a "Test Description Form":

Table 2 Text description fonn
Text Description Fonn I
Proiect: Project Name I Software version:
Test ident: 1 Test title: Use Case name
Test type: Functional Robustness Perfonnances Ergonomic Documentation
OBJECTIVES:
Use context field of the Use Case External Documentation
PRE-REQUIREMENTS:
Pre-conditions field oftue Use Case External Documentation
PROGRESS INSTRUCTIONS:
Description field of the Use Case External Documentation
INPUT:
Input data field of the Use Case External Documentation
EXPECTED RESULTS:
Exceptions field of the Use Case External Documentation
OBSERVED PROCESS:

OBSERVED RESULTS:

This "Test Description Form" is generated from the UML model (in XMI
format) and the XML files attached to the UML model. This approach allows
us to have an automatic generation of the validation plan.

5. CONCLUSION AND PERSPECTIVES

The main contribution of the project is to make UML easier to use. The
NEPTUNE process provides a "ready to use" instantiation of the Unified
Process with guidelines for most of the problems a user faces when they use
UML for the first time or in a new context. This process has been built from
the "know-how" acquired from intensive UML usage on development of
many projects. Furthermore, the NEPTUNE tools allows the user to make
reliable models by checking the set of rules associated with the process and
allowing the user to extend these rules by defining their own set.

The NEPTUNE tools also provide ways to document the model with
default templates and transformations that can be extended or customized as
needed.

As the documentation is generated from a model, it can always be up-to
date: after each model improvement, the associated documentation can be
generated again without changes.

The user can define document shapes, transformations and checking rules
so that the NEPTUNE tools can be extended and customized as needed.

www.manaraa.com

118 Chapter 6

All the NEPTUNE tools use as entries XMI and XML and are totally
independent from the case tools used to design the UML model.

The purpose of the NEPTUNE consortium is also to extend the use of
UML and the NEPTUNE tools to different domains in which it will be useful
to model processes or organizations using UML.

ACKNOWLEDGMENTS

This collaborative work would not been achieved without the active
contribution of Pierre Bazex, Louis Feraud, Christophe Lecamus, Ralph
Sobek, Christian Percebois, Yannick Cassaing, Antoine Jammes, Laurent
Pomies and Etienne Roblet.

www.manaraa.com

Chapter 7

The OOSPICE Assessment Component: Customizing
Software Process Assessment to CBD

Friedrich Stall inger, Brian Henderson-Sellers and John Torgersson
Kepler University LiIlZ, Austria; University a/Technology, Sydney, Australia; University of
Boras, Sweden

Abstract: OOSPICE is a collaborative EU project which is developing a CBO capability
assessment approach along the lines of ISO 15504 together with a development
methodology for CBO consistent with this assessment approach. There are
several elements to this, one of which is the creation of a process assessment
methodology specific to the needs ofCBO. This chapter focuses on this
assessment methodology component of the overall OOSPICE project. Based on
the description of the underlying CBD Process Reference Model forming the
common basis for the assessment as well as the CBO methodology, we provide
details on the project's CBO assessment model and show how this model is
implemented in the assessment tool and how the application of these two
elements to real world CBO projects is supported through an assessment
method.

Key words: Software process assessment, software process improvement, component-based
software enginecring

1. BACKGROUND TO THE OOSPICE PROJECT

According to many analysts, a key to overcoming the bottleneck in soft
ware productivity can be found in increasing the reuse of components, i.e. to
assemble systems from more-or-less finished building blocks. Since the mid
nineties, the software engineering community has been witnessing the
growing popularity of this component-based development (CBD) approach
which is radically changing the way in which systems are analysed,

www.manaraa.com

120 Chapter 7

architected, implemented, transitioned and evolved. However, the simple idea
of CBD is hard to achieve [1] and companies are experiencing many problems
in adopting or applying CBD; for instance, organisational structures and
processes that are not adapted to CBD, inappropriate technical and
management approaches that are being used for CBD, a general lack of
knowledge and skills to obtain the benefits of CBD regarding quality and
productivity, deficient or inadequate information concerning availability,
quality and reliability of software components as well as capability of
component suppliers and their component construction process, or a
prevailing culture that is resistant to CBD, rejecting newness and mistrusting
components.

The demands of rapidly changing, in particular internet-based, business
environments [2] have led to solution providers devising or adopting a variety
of ways to design and build software systems from third-party as well as their
own components. At the CBD implementation level, component infrastructure
technologies such as the OMG's CORBA (Common Object Request Broker
Architecture), Sun's lavaBeans and Enterprise lavaBeans, and Microsoft's
(Distributed) Component Object Model (DCOM/COM) have become widely
accepted de facto industry standards; yet methods and processes supporting
CBD are still not commonplace. While various suitable processes for CBD
are currently still emerging and their general applicability is still being
debated, systematic and generally accepted approaches to the standardization
of such development processes for CBD are still missing. Like other
development approaches CBD would benefit greatly from the availability of
repeatable processes for building, selecting and assembling modules - here
components.

The fields of software process assessment (SPA) and software process
improvement (SPI) target very similar goals to those of CBD - improvements
in time-to-market, cost and quality. Nevertheless, established SPI approaches
such as CMMI and SPICE [3] are not ideally suited to either object-oriented
development or CBD, constituting a significant gap in technology. They
generally lack tailoring and customisation to CBD, in particular with respect
to terminology or adequacy and granularity of the underlying process or
assessment models. Furthennore, the relationship between CBD and the way
in which components themselves are produced is often not clear. As there are
no widely accepted processes specifically for CBD, this creates problems on
applying SPA (and SPI) to component-based development.

The EU-funded international research and development project OOSPICE
(Object-Oriented Software Process Improvement and Capability
dEtermination for Object-Oriented and Component Based Software
Development, IST-1999-29073) aims to overcome the above shortcomings
with respect to standardisation and assessment and improvement of processes
for CBD. Based on the principles of empirical software engineering it

www.manaraa.com

7. The OOSPICE Assessment Component 121

combines the four major concepts of CBD, object-oriented development,
software process assessment and software process improvement. It focuses on
the processes, technology and quality in software development using
component -based development.

Its main technological objectives are the evaluation of current theory and
practice in CBD, the development of a unified CBD process model with
reference to best practice and underpinning process metamodel, the
development of a CBD assessment methodology consisting of an assessment
model, an assessment method and an assessment software tool, the
development of a CBD methodology for 'architecting' and assembly of
independently produced components and for component provision together
with a CBD software tool, and the definition of capability profiles for
component providers through the analysis of results of the CBD process
assessment methodology. There is a further goal of ensuring that the results of
the project gain both international acceptance and take-up by industry through
dissemination, standards and licence schemes. In particular, an extension to
the ISO 15504 process assessment standard will be proposed. In achieving
these project objectives, the task of major initial importance is the definition
of a unified CBD process model able to serve two functions: as a basis for a
methodology for component-based development (see Chapter 8 for details),
and also as a process reference model and source of process definition for
capability assessment.

The underlying process reference model for CBD and its relation to the
assessment model as well as an overview on the initial assessment
methodology for CBD are described in the remainder of the chapter. Section 2
provides some background on software process assessment and software
process improvement and outlines the differences between traditional and
component-based software engineering, while Section 3 discusses the
underlying process reference model for CBD. Section 4 describes the CBD
assessment methodology, including a description of the structure of the
assessment model and an overview of the assessment method and tool.
Conclusions and insights gained so far and the outlook on further work round
up the chapter.

2. SOFTWARE PROCESS ASSESSMENT AND
IMPROVEMENT AND CBD

A promising approach for tackling the problem that software development
is generally too late, too costly and results in products of insufficient quality is
to ensure that software is developed via a well-defined high-quality process.
To reach this goal and to continuously improve the software development
process, it is necessary to regularly assess its efficiency and capability and

www.manaraa.com

122 Chapter 7

decide on and implement improvements. This approach is called Software
Process Assessment and Improvement, with Software Process Improvement
(SPI) intending to provide a comprehensive set of industry best-practice
processes that a software-developing organization should have implemented
together with a framework specifying how to continuously improve these
processes.

Although the assessment of process capability is a relatively new
technique in the software industry with formal approaches dating back to the
pioneering work of Humphrey [4], a number of assessment-based methods for
SPI has been developed and results from empirical research, e.g. studies by
the Software Engineering Institute [5] or data from the SPICE Trials, have
demonstrated the efficacy of process improvement approaches based upon the
results of process assessment and shown that process improvement efforts can
lead to gains in productivity, time to market and quality, that in total add up in
returns on invested resources.

The emergence of a number of competing approaches to process
assessment in the early '90s finally led to the establishment of the SPICE
Project and the development of an international standard, ISO 15504 [6],
intended to harmonize the various (generally traditional) software
engineering-oriented approaches to software process assessment.

On the other hand, CBD has a major impact on traditional software
engineering processes, mainly through the split of the overall development
activities into multiple parallel component provisioning and application
assembly tracks and the fundamental separation and independence between
specification and implementation and the basic side effects resulting from
these, such as the focus on architectural tasks, the need for integration of
multiple component provisioning strategies (e.g. in-house development of
components, acquisition of components, wrapping of legacy systems or asset
integration in general), the need for specific project planning tasks together
with the complex dependencies that occur between project management and
the component management in general.

Hence, CBD raises questions about whether traditional software
engineering approaches are appropriate in this emerging field and, as a
consequence, whether existing approaches to software process assessment and
improvement are appropriate for the assessment and improvement of CBD. In
general, CBD is integration-centric, emphasising the selection, acquisition,
and integration of components from in-house sources and/or external vendors,
with the latter including the use of commercial off-the-shelf (COTS) products
or open source components. Furthennore, companies gaining competitive
advantage by acquiring third-party components, which may thus be either
'black box' or 'white box', often have to develop their own components when
third-party components do not fully satisfy system requirements [7] -
contributing to significant variation in CBD processes and complicating these

www.manaraa.com

7. The OOSPICE Assessment Component 123

processes as well as their assessment. Indeed, findings from software process
assessments indicate that some approaches to software process assessment
have difficulties in evaluating process capability for CBD. These studies tend
to confirm expert views that the practices in CBD in many of its forms are not
always adequately mapped to the process models used in assessment
approaches. The customizing of software process assessment approaches to
CBD has been almost non-existent although available evidence indicates that
there is a distinct need.

Hence the OOSPICE project focuses on the processes employed for both
the provision and development of reusable software components and for the
architecting and assembly of larger systems from components, with the goal
of overcoming the above (and future) shortcomings (e.g. inadequate
terminology, inadequate granularity of processes) -that may be experienced
when applying current assessment approaches to CBD by developing a
process reference model for CBD and an assessment methodology based on
this process reference model. This approach is favoured by the evolution of
ISO 15504 to a generic framework for process assessment [8] applicable
across a wide range of domains in the course of its transition from a technical
report to an international standard. Under the resulting revised architecture of
ISO 15504, specific process models may be established for different domains,
with the status of the models ensured through appropriate standardisation
mechanisms.

3. CREATING A PROCESS REFERENCE MODEL
FORCBD

The Unified CBD Process Model under development by OOSPICE plays a
central role within the project. It is defined as a set of process component
specifications describing the software life cycle processes for CBD. Its main
purpose is to provide the common basis for the assessment methodology
work, in particular the assessment model and the underlying Process
Reference Model (PRM), and the CBD methodology work (Chapter 8) and to
ensure consistency of these two development tracks. The process model
contains processes and tasks that are to be applied during software
development and maintenance and describes the involved Va'ork products. The
scope of the model covers the development of software applications based on
the use of software components as well as for developing components that are
independently deployable. Attention is also paid to converting legacy
software into components.

www.manaraa.com

124 Chapter 7

Supplier Selection Configuration Management
Supplier Monitoring Documentation
Customer Acceptance Problem Resolution
Supply Joint Review
Customer Support Verification
Operational Use Validation

Product Evaluation
Quality Assurance
Audit
Usability

Modelling Management
Domain Engineering Programme Management
Business Modelling Project Management
Requirements Engineering Risk Management
Behaviour Specification Architecture Measurement
Provisioning Strategy Quality management
User Interface Specification Infrastructure
Application Assembly Organisation
Application Internal Design Process Establishment
Component Assembling Process Assessment
Application Testing Process Improvement
Application Delivery Asset Management
Component Selection Reuse Programme Management
Component Provisioning Human Resources
Component Internal Design Human Resource Management
Component Testing Training
Component Delivery Knowledge Management
Legacy Mining

Compared to traditional software engineering, CBD has several major
aspects that are reflected in the CBD process model as developed by
OOSPICE (cf. also Section 2): firstly, its starting point is a clear
understanding of the business model representing the context in which a
solution has to be provided and acting as a major input for architectural
activities; secondly, CBD is a methodology based on behaviour analysis with
roots in the behaviour-based Catalysis methodology developed by D'Souza
and Wills [10]; thirdly, the behaviour is assigned to component specifications
that are used in a component specification architecture; finally a key aspect of
CBD is to decide strategically upon the provisioning of each component
specification, i.e. acquisition from an external source, wrapping of a legacy
system, adaptation of an existing component, in-house development, etc. As a
consequence, the traditional engineering processes have to be split into a
multiple track development process consisting of an application assembly
track focusing on solving a business problem and a component provisioning
track focusing on delivering a single component which can be used as a
software building block in one or more applications. The resulting OOSPICE
CBD engineering processes are shown in Table 1 grouped into the process
categories Modelling, Application Assembly and Component Provisioning

www.manaraa.com

7. The OOSPICE Assessment Component 125

together with the processes of the non-engineering process categories
Support, Customer-Supplier, Management, Organisation and Human
Resources.

The process components of the OOSPICE process model are defined in
terms of Name; Purpose; Outline; Tasks; Inputs and Outputs and do not yet
fully describe the internal details of the processes, e.g. techniques or aspects
of sequencing. The resulting CBD Process Model on the one hand forms the
starting point for the definition of the CBD Methodology in which these
process details are fleshed out, and, on the other hand, for deriving a Process
Reference Model (PRM) as the basis for the assessment methodology work.
Further details on the underlying architecture of the OOSPI CE models and on
the CBD methodology can be found in Chapter 8.

The process reference model is the starting point for the OOSPICE
capability assessment model. A PRM is a model that defines the processes
that are to be assessed by providing basic definitions of these processes. It is
defined in tenns of Name; PUlpose and Outcomes only and is thus derivable
by identifying Outcomes from the Tasks, together with Inputs and Outputs of
the process model. An Assessment Model (cf. Section 4.1) is then created to
be compatible with the PRM by adding indicators of capability to a subset of
processes of the PRM that are used to assess the capability of the respective
processes. The resulting capability profile evaluates the maturity and success
of the implemented processes in terms of these quality indicators. The
assessment model thus draws on the PRM and embeds the measurement
framework ofISO 15504 [11].

One of the aims of the OOSPICE project is to propose the PRM for CBD
as an extension to the ISO/IEC 15504 process assessment standard and thus to
extend the capabilities ofIS015504 to support CBD.

4. THE CBD ASSESSMENT METHODOLOGY

The OOSPICE CBD Assessment Methodology provides the framework
for assessing software processes in a component-based environment. It aims
to be used in all kinds of organisations and market sectors that have adopted a
component-based approach to software development.

www.manaraa.com

126

'''':':'''-.,:'~'-''
~:~.!..':"~";~-:;~:7;

- __ Jr;., .. _"

~g~;~[ZI.G.i
~~~--

Input 
Purpose 

Assessment 
Tool Process 

Assessment 
Model 

Scope 
Constraints 
Responsibilities 

Process 
Assessment 

Method 

Assessor 
Training 

Syllabus & 
Certification 

Scheme 

~/t 
\ Process 
..liI Competent Reference 

Assessors Model 

Assessment User Trials 

Chapter 7 

Process 
Improvement 
or Capability 

Detennination 
Guidance 

Figure 1. Overview on the OOSPICE assessment methodology components 

Figure 1 provides an overview on the single components of the assessment 
methodology and how they work together. At the core of the methodology is 
the Assessment Method (see Section 4.2) that defines how an assessment shall 
be performed within the assessment framework, i.e. how the assessment input 
is transfonned into the assessment output (mainly capability profiles and 
assessment findings) that are further used for process improvement or 
capability determination. The means used for measuring the capability of the 
assessed project or organisation is the Process Assessment Model (PAM) (see 
Section 4.1) that incorporates the underlying Process Reference Model (PRM) 
containing the processes for component-based software development. An 
Assessment Tool (see Section 4.3) is then used to aid collection of assessment 
data, rating and presentation of the results. An assessment is nonnally led by a 
Competent Assessor who has the required knowledge, skills and experience. 
The OOSPICE project will fmiher define the basis for the operation of a 
certification scheme for assessors together with an assessor training syllabus 
for training courses. 

Furthermore, the main components of the OOSPICE Assessment 
Methodology, namely the assessment method, the assessment model and the 
assessment tool, are subject to validation through Assessment User Trials. 



www.manaraa.com

7. The OOSPICE Assessment Component 127 

The main components of the Assessment Methodology are described in 
the following subsections. 

4.1 CBn Assessment Model 

The transition to a component based approach for software development 
among a large number of organisations has led to a new way of performing 
software development, using different processes and a new terminology. 
Therefore a need for processes, suitable in a CBD environment, and a way to 
assess their capability has increased. 

The current international standard for software process assessment, 
ISO/IEC 15504, has proven to be suitable for general software development 
approaches. However, there is a lack of coverage of CBD-specific issues both 
when it comes to the content within the processes and in the terminology 
used. Thus, there is a gap and the aim of the OOSPICE assessment 
methodology model is to bridge this gap. 

The PRM described in Section 3 defines a process framework to be used 
when developing software with a component-based approach. The assessment 
model, described in this chapter, elaborates on the CBD Process Reference 
Model (PRM) in order to facilitate capability assessment of these processes. 

4.1.1 Structure of the Model 

Like the PRM, the assessment model is a two-dimensional model 
containing a process dimension and a capability dimension. The relationship 
between the PRM and assessment model is a one-to-one relationship between 
the process categories, processes, purpose statements, process capability 
levels and the process attributes. However, the PRM doesn't contain a 
sufficient level of detail to be used alone as the basis for reliable assessments 
of process capability. Therefore, the assessment model needs to provide a 
comprehensive set of indicators of process performance and capability. 

Indicators work as guidance when assessing the different processes. Figure 
2 shows the structure of the indicators used within the assessment model. The 
indicators are divided into process perfonnance and process capability. To 
indicate process performance, for each process, a set of base practices is 
provided along with the input and output work products and their 
characteristics. The base practices are a description of the unique activities of 
the process and the work products represent the input and outputs from these 
activities. This is where the major CBD characteristics can be seen. The 
indicators of process perfonnance are closely related to the process outcomes 
defined in the PRM and address the achievement of the process purpose. 



www.manaraa.com

128 Chapter 7 

Assessment 

practices practices 

Figure 2. Structure of assessment indicators 

Management practices are provided as indicators for process capability 
and are the means of achieving the capabilities, addressed by process 
attributes. Evidence of management practice performance supports the 
judgement of the degree of achievement of the process attribute. 

The indicators of process capability are applicable to all processes in the 
PRM whereas the indicators of process performance are associated with one 
particular process. 

4.1.2 Field of Application 

The purpose of the PAM is to provide an assessment model suitable for 
assessments of all organisations that are using a CBO approach - not only 
those that have implemented CBO to its full extent but also those 
organisations that are planning to adapt CBO in order to find out in what 
direction the organisation should move to get closer to a full implementation 
of CBO and how to improve their process capability. 

The assessment model can be used as an internal tool with the purpose of 
improving the organisation's processes as well as a tool to verify a component 
supplier. 

4.2 CBD Assessment Method 

In order to perform consistent and repeatable ratings of process capability, 
the current international standard for software process assessment, ISO/IEC 
15504, defines a set of requirements for the performance of an assessment. 



www.manaraa.com

7. The OOSPICE Assessment Component 129 

The CBD assessment method is developed to be confonnant to the 
requirements in the standard. 

The assessment method together with the assessment model represents the 
core element of the CBD Assessment Methodology. The objective of the 
method is to provide as much help and guidance as possible for the 
assessment team in order to facilitate the assessment process and improve the 
quality and reliability of the assessment result. Therefore, the method 
emphasizes the use of detailed templates that work as outputs from the 
assessment and are associated with one or several of the tasks that are 
perfonned within the method. This makes the output from different 
assessments comparable and decreases the likelihood of leaving out important 
infonnation when reporting the result back to the assessed organisation. 

4.2.1 Structure of the Method 

The method is grouped into three phases: preparation-, assessment and 
reporting phase. Each phase contains a purpose and a set of activities. The 
purpose states the overall objectives of the phase and gives an indication 
about what to accomplish within the phase. Each phase is further divided into 
activities. Each activity has a general description and a number of tasks. 

The description is in short tenns what is to be done within the activity. The 
tasks are a further elaboration about how to meet the requirements of the 
activity and the responsibility for carrying out the tasks. The roles needed to 
carry out the activity confonn to the tasks as well as the output(s) produced. 
The outputs are in fonn of templates, which are documents that help the 
assessors to collect the data and present the resu1t( s). 

Method Phase Activity Task 
3 * '------,---' *'-------' 

Purpose Description 

Figure 3. Structure of the eBD assessment method 

In the method, a set of guidelines is also provided and is incorporated as 
assistance in using the assessment method. The guidelines serve as additional 
infonnation about how to conduct the different activities. 



www.manaraa.com

130 Chapter 7 

4.2.2 Performing the Assessment 

As mentioned in section 4.2.1 the method is divided into a preparation, 
assessment and reporting phase. These are phases that an assessment team 
will go through during any assessment. Figure 4 provides an overview of the 
phases and activities that are described in the method. The rounded rectangles 
show the phases which have a set of activities connected to them. 

Preparation ---+ Assessment Reporting 

J- Initiation 
'--Planning 

J- Briefing 
I-- Data Acquisition 
I-- Data Validation 
'- Process Rating 

Result Reporting 

Figure 4. Phases and activities in the assessment method 

4.2.2.1 Preparation Phase 
During the preparation phase, the organisation to be assessed and the 

assessment team prepare for the upcoming assessment phase. The major part 
of this phase is the planning and scheduling of the assessment. The 
assessment plan is created containing infonnation about the assessment scope, 
roles and responsibilities and the key activities to be perfonned during the 
assessment. 

4.2.2.2 Assessment Phase 
Most of the activities during the Assessment Phase are perfonned on site 

within the assessed organisation. In this phase the assessment team and the 
participants from the assessed organisation are briefed on the purpose with the 
assessment as well as the methodology to be used. After that, interviews are 
perfonned to collect data sufficient to meet the assessment purpose and scope 
and to rate each process attribute up to and including the highest capability 
level defined in the assessment scope. The rating is based on objective 
evidence gathered from the collection and validation of the required data. 

4.2.2.3 Reporting Phase 
When the data have been collected and the different processes rated, the 

result is reported back to the assessed organisation. The report will highlight 



www.manaraa.com

7. The OOSPICE Assessment Component 131 

the process profiles, key results, perceived strengths and weaknesses, 
identified risk factors and potential improvement actions. 

4.3 CBn Assessment Tool 

An Assessment Tool is being developed within the OOSPICE Project to 
aid collection of data during an assessment, rating of process attributes and 
presentation of the assessment results to the assessed organisation. 

The assessment tool implements the assessment model and provides easy, 
generally hyperlinked, access to the elements of the assessment model and 
their definitions. Figure 5 shows an example screen for data collection and 
process attribute rating. Figure 6 provides a sample presentation of assessment 
results. 

The tool is currently developed to the stage of an internal prototype for 
usage in and support of the project's Assessment User Trials. The final 
version will be available for download at www.oospice.com . 

.. . '" 
__ p_ro_c_e_ss ________________________________________ ~_7 I ~ tl l 

-1:!!",'" .. - PI!'L- _-____ ' ' ____ • I 
CU5 fl . 1 Acquisition Process I r: !!'I.one II =-I xef' 1':'3 t· ~I"~ t' ,',r ,. +-"t:-(lJ'l" 

'----------------------' I Process Performance ~ 
r Unclear 

Define Domain. Fro ~ ~e c de5.:: r ~':J':;{'" '=,. :ho: d·')'T.s,., .:. 
--..i j .:E'.::y:-""'rI.~ t"·, ~ •. ·· ·.,.-:two::.!II_:.r:f.;.·.I\I ·.:s, ~I 

:., :'~m~ ~ , .... .:. ~o::Ie.,,5::- · .1':''''~I''' 

F .. t ."lbll .. h St~ncti'll'"d lern1inoi09Y' ~.,,.... .... .,..,:. 
s::t"_ :l...J"~ ~ :; ~n fiCb"'l: I~'''''':; <..:~e-c y Y:)m~ ... -: (P~--:-: If) 

;;. ;..1.1 ~Ir~-:: ..... r'i'~ln·-e.·'·· t· "~·-~;;.l" rr",~~r;.i."';;'lt!'M .• 
r: t"',~ c~·nlt!lllr 

E'5u,bh~h Domain AS~lJmpflon§ . (fe5[~ -to'" 0f 't1_ 

~ .. ;,u"! .. ,tJo;'n~ ~..f: ,iI .. "'" ~": C';'·I"!l.:Ja1 ~'YJ ,~,-'1 :1.' t 'l'U.. :-" 
[!'"~ en.' ,f':'('k-'::: -:,' f _. fr, Q. ,; f,HT. " rt"1-J l"t" 
~-:-wmp~nl :r,~, e "'-'10 t ~ ... 'i~t .. r::: d:~:n,,;l .... .s.r 
among tn~ sv~tems 

A<ri<riCiIi'" Domain Statu .... f\l.lll.o·" thl' lectlnlc:) 
m8[U" ,' of tt'lt- d:>mll~ n (!!:"rrs of D:)m.ar OtJ~c"l,Ie-~ 
a,:l plsn'5 to'- dQw"''-1 ::I,:','~hpm':'~t and ~v,:ll.;llon. 

Identify lC9.LJCY I'Jroductc,; . Ic~n~fy t,~S~ proaucr::. .1 
from ~'ltI50l""'q s"~tems n the- C('Imarn t.,at ~r,= DGle"l(ta11l 
... ;-et-,Ji fC'f'" IrdhlOfI 01 odd!";'lJ~1 t~ dC.Hllci ~ b::.:S-:l~ .. 

Figure 5. Sample screen of the OOSPICE Assessment Tool for assessment data collection and 
process attribute rating 



www.manaraa.com

132 

l('dIJ.IIJd<!!tilln III'. 

~'lQ~C'-:'.·~,ct'IE 
!'!A-:: ,.:....'.:,~rl !!: 'M!!~11 ~If 
b~·:.:>(' ?OC~::~S A.'tt:" .~ 

~~::.:. ~~,.~(::IJI5t$ 
"O:'· ,tI:;/1"~'''i,Il'I''I{':> j (~e.:"1tI1 

'..)IF'''; 

3 CD~"i.!I"lI'".g (Co!""::!) 

.( Custo:~ Su llhl!~ (Cu~l 

I O.~'. ::::J 
lPI eO; lIlflIg "' o~ Cif:d! ~ :; :;'UI=P::'-: 15 ;..:: J 

rhd .,rrhcnble ~ -
rh.t bn ..... "ItI"J I~ 6M,mi'gel"!"~"'Ii'MJri 

! Ollii~~~~~al (On;;l 

lC:tJ 

/ 

X Y X X 

• • • 
• • • 

• • 
• • • • • • 

Chapter 7 

5:-'W. ... .....lI~ r 
:::..~-I''W''Ih~ r 

e.; t ;;':" '3~ =--~'1 p..:. .: : 0':";1 po .... '!;:: 
~ R' loC-... ""t. W .. Ut.l,II't ~j" ':'f'lM"lt 1lT.~rt>;1' 

X X > X X X 

• • • • • 
• • • • 

• • • • • • 
• • • • • • 
• • • • • 

&!l 

Figure 6. Sample chart of the OOSPICE Assessment Tool for assessment result presentation 

5. CONCLUSION 

The international research and development project OOSPICE aims to 
overcome the gaps and shortcomings experienced when applying current 
software process assessment and improvement approaches to CBD and to 
provide a CBD methodology (see Chapter 8) consistent with the developed 
process assessment and improvement approach. It is based on component
based software engineering principles and encompasses processes and process 
engineering, on the one hand, and process capability assessment on the other. 
In this chapter we have focused on the CBD process model developed by 
OOSPICE that is forming the common basis for both development strands. 
We have shown how an ISO 15504 confonnant process reference model can 
be derived from this process model and how this process reference model 
forms the basis of a CBD assessment methodology consisting of an 
assessment model, method and tool as main elements. These methodology 
components are currently available as initial, project internal versions and 
subject to ongoing work and, in particular, about to undergo validation within 
Assessment User Trials. The final results will be available as soon as possible. 
It is also intended to propose the final results, in particular the developed 



www.manaraa.com

7. The OOSPICE Assessment Component 133 

process reference model, for extension of the ISO 15504 process assessment 
standard to CBD. 

ACKNOWLEDGEMENTS 

The OOSPICE Project is developed as EU-funded shared-cost RTD 
project under contract number IST-1999-29073 within the European 
Commission's Fifth Framework Programme. 

The OOSPICE project partners are: 
Institute of Systems Sciences, Department of Systems Engineering and 
Automation, Kepler University Linz (Austria) (Coordinator) 
Computer Associates (Belgium) 
WA VE Solutions Information Technology GmbH (Austria) 
Huber Computer Datenverarbeitung GmbH (Austria) 
University of Boras (Sweden) 
Volvo Infonnation Technology (Sweden) 
Griffith University (Australia) 
Centre for Object Technology and Application Research (Australia) 
This is Contribution Number 02/03 of the Centre for Object Technology 

Applications and Research (COTAR). 
The introductory sections of this paper are based in part on material 

published in Stallinger et al. [12]. 
We also wish to thank the Australian Research Council for funding the 

Australian contribution to this project. 

REFERENCES 

[I] Blechar, M., Gartner Group Report: Chasing the Elusive Productivity of Components, 
November 1999. 

[2] Feldman S., The Objects of E-Commerce, OOPSLA '99 keynote address, Denver, 
November 1999. 

[3] ISO/IEC TR 15504: 1998 - Software process assessment. ISO 1998. 

[4] Humphrey, W.S. and Sweet W.L., A Methodfor AsseSSing the Software Engineering 
Capability of Contractors, Report CMU/SEI-87-TR-23, Software Engineering Institute, 
Pittsburgh, September 1987. 

[5] Herbsleb, J., A. Carleton, J. Rozum, J. Siegel and D. Zubrow, Benefits ofCMM Based 
Software Process Improvement: Initial Results, Report CMU/SEI-94-TR-13, Software 
Engineering Institute, Pittsburgh, August 1994. 

[6] Rout, T.P., The SPICE Project: Past, Present and Future, Software Process '96, Brighton, 
December 1996. 



www.manaraa.com

134 Chapter 7 

[7] Seacord, R. c., Custom vs. Off-Tile-Sheff Architecture, Technical Note CMU/SEI-99-TN-
006,1999. 

[8]ISO/lEC JTC IISC7, High Level Design for the Revision ofISOIIEC TR 15504: 1998, 
Document SC7 N221O, Oct. 1999. 

[9) OOSPICE Partners: 05.1 -Initial CBD Process Model, OOSPICE Internal Deliverable, 
OOSPICE Partners, May 2002. 

[10) D'Souza, D.F., Wills, A.c., 1999, Objects, Components and Frameworks with UML. The 
Catalysis Approach, Addison-Wesley, Reading, MA, USA, 785pp. 

[I I) ISO/IEC 15504,2002, International Standards Organization (in press) 

[12) Stall inger, F., et al.: Software Process Improvement for Component-based Software 
Engineering: an Introduction to the OOSPICE project. Procs. Euromicro 2002 Conference, 
IEEE Computer Society Press, Los Alamitos, CA, USA. 



www.manaraa.com

Chapter 8 

The OOSPICE Methodology Component: Creating a 
CBD Process Standard 

Brian Henderson-Sellers, Friedrich Stallinger and Bruno Lefever 
University a/Technology, Sydlley, Australia; Kepler University Linz, Austria; Computer 
Associates, Belgium 

Abstract: OSPICE is a collaborative EU project that is developing a CBO capability 
assessment approach along the lines of ISO 15504, There are several elements to 
this, one of which is the creation ofa new methodology and underpinning 
metamodel for CBO. This chapter focuses on these latter two components of the 
overall OOSPICE project. We will describe both the genesis and the results of 
the process components, their metamodel descriptions and their realization in 
the construction of a project-specific CBO process. We will also show how 
these elements are linked to and provide the basis for the Process Referencc 
Model, Assessment Method and Assessment Model. 

Key words: OOSPICE, capability assessment, CBD methodology 

1. BACKGROUND TO OOSPICE PROJECT 

Component-Based Development (CBD) is a new style of software 
engineering, which has been emerging in industry since the mid nineties. 
Driven by the pressure of industry to deliver solutions in a fast and efficient 
way, it resulted largely from a reaction to the software engineering activities 
of the early nineties where many development shops concentrated on 
rewriting their portfolio of solutions from scratch in a more flexible 
architectural approach. Many of these initiatives stalled when developers and 
managers began to realize that it took a relatively long time to re-develop an 
existing core system that had been developed, enhanced and used for, for 
example, more than fifteen years. The core questions remained: firstly, why 



www.manaraa.com

136 Chapter 8 

one should re-write software that already fulfils the requirements and, 
secondly, whether the fact that this software is written using traditional, old 
fashioned underlying technology is a sufficient reason in itself for this re
writing. 

CBD is a development approach capable of creating new systems from 
blends of old systems, brand new developments, acquired packages or 
components in a mix of different technologies. It shifts the focus of software 
development from core in-house development to a development process 
focussing on the use of internally or externally supplied components, as well 
as promising increased efficiency and flexibility in development as well as of 
the developed products. These resulting products are no longer products with 
some kind of 'closed nature' but, instead, component-based products that can 
be integrated with other software products. 

While the increase in the popularity of CBD has largely been driven by the 
appearance of standards or quasi-standards on the product side (e.g. 
component models such as COM/DCOM, JavaBeans, CORBA), the 
community is lacking systematic and widely accepted approaches to 
standardized development processes for CBD. Indeed, the use of component
based development has a major impact on traditional software engineering 
processes. This results mainly from the split of the overall development 
activities into component provisioning and application assembly tracks and 
the basic side effects resulting from this distinction, such as: 
- the fundamental independence between specification and implementation, 
- the focus on architectural tasks, 

the need for integration of multiple component provisioning strategies, 
such as inhouse development of components, acquisition of external 
components, wrapping of legacy systems or asset integration in general, 

- the necessity of a central component catalogue and mechanisms to foster 
the exchange of components, and 

- the need for specific project planning tasks, as well as complex 
dependencies between project management and the component 
management in general. 
In addition, the components need, themselves, to be created. Thus 

component architecting also needs to be supported. These three aspects of 
CBD (component architecting, provisioning and assembly) suggest the need 
for the introduction of new elements into existing process element 
descriptions such as those found in IS012207, IS015504, the OPEN Process 
Framework [1], Catalysis [2] and similar documents. 

On the other hand, the fields of Software Process Assessment (SPA) and 
Software Process Improvement (SPI) share very similar goals of CBD -
shorter time-to-market, reduced costs and increased quality. They provide a 
wide spectrum of approaches to the evaluation and improvement of software 
processes (CMM, CMMI, SPICE etc.) with considerable advances in the 



www.manaraa.com

8. The OOSPICE Methodology Component 137 

standardization of these approaches [3] as well as of the underlying process 
models (e.g. [4]), but generally lack tailoring and customization to CBD. 

The EU-funded international research and development project OOSPICE 
(OOSPICE is an acronym for Software Process Improvement and Capability 
dEtermination for Object-Oriented/Component-based Software Development, 
1ST -1999-29073) builds on these developments within process assessment 
standardisation. To overcome the shortcomings experienced when applying 
current assessment approaches to CBD (e.g. inadequate terminology, 
inadequate granularity of processes), OOSPICE focuses on the processes, 
technology and quality in software development using component-based 
development. Based on the principles of empirical software engineering it 
combines four major concepts: CBD, object-oriented development, software 
process assessment and software process improvement. Its main objectives 
are a unified CBD process model and underpinning metamodel, a CBD 
assessment methodology consisting of an assessment model, an assessment 
method and an assessment software tool, and a CBD methodology together 
with a CBD software tool. 

The first work done in the OOSPICE project towards creating 
process/methodological support created an interim set of process component 
specifications - a Process Model that is relatively summary in nature and 
forms the springboard for the Assessment Model and encompasses the 
Process Reference Model (PRM) as well as being the. "bare bones" of the 
CBD Methodology to be developed later. Major inputs to the project were 
specified as the various ISO standards, especially 15504 and 12207, and the 
OPEN Process Framework [5], [1]. 

The CBD Process Model, which is the focus of this chapter, plays a central 
role in the project by ensuring consistency of both the assessment 
methodology and the CBD methodology parts of the project. The Process 
Reference Model (PRM) for CBD derivable from this Process Model is 
intended to be proposed as an extension to the ISO/lEC 15504 process 
assessment standard. The underlying work on harmonizing terminology and 
on establishing the architecture necessary for the various process and 
assessment models of the OOSPICE project and an overview on the initial 
Process Model as well as an outlook on how they will be further used in the 
project are described in the remainder of the chapter. Section 2 describes the 
necessary OOSPICE terminology, while Section 3 describes the specific 
methodological requirements of CBD. Section 4 discusses the creation of the 
CBD methodology, including a description of the architecture of the various 
process and assessment models of the OOSPICE project and how they relate 
to each other. Section 5 provides an overview on the initial proposals for the 
CBD process metamodel. Conclusions and insights gained so far and the 
outlook on further work round up the chapter. 



www.manaraa.com

138 Chapter 8 

2. TERMINOLOGY FOR PROCESS REFERENCE 
MODEL, ASSESSMENT MODEL, 
METHODOLOGY AND EXISTING ISO 
STANDARDS 

A major challenge to the development of the various OOSPICE models 
was the differing terminology across the various subfields of process being 
united. The key issues relate to the understanding of the key term "process". 
These differences derive primarily from the different heritages of the two 
main approaches being merged. Within the standards arena, that is ISO 12207 
and ISO 15504, the approach derives from the process management principles 
embedded in concepts of Total Quality Management [6], [7]. Within this 
framework, driven largely by the success of the Capability Maturity Model 
[8], the goal for effective improvement of organisational maturity is to 
establish a "defined process" for each instantiation; the role of the process 
was to transform defined inputs into outputs, and a "defined process" was 
seen as achieving this in a repeatable and measurable manner. In defining 
such a process, a key element is the establishment of work components 
(activities or tasks) that made up the process; thus, the process is seen as a 
series of elements assembled to achieve the transfonnation of inputs to 
outputs. Hence, we obtain the following definitions for process: 

"A sequence of steps performed for a given purpose; for example, the 
software development process." [9] ~ also used in the CMM for Software [8]. 

"A system of operation or series of actions, changes, or functions, that 
bring about an end or result including the transition criteria for progressing 
from one stage or process step to the next." [10] ~ also used in the Systems 
Engineering CMM. 

ISO 12207 [4] introduces the tenn "activity" as an identifier for the 
"steps" or "actions" referenced in earlier standards: "A set of interrelated 
activities, which transform inputs into outputs." This definition became the 
generally accepted standard, and is employed in EIA IS 731 [11] and ISO 
15504 [3]. 

ISO 12207 also introduces the hierarchical decomposition of processes ~ a 
process is composed of a set of activities, and each activity in turn is seen as 
comprising one or more tasks. The reason for this derives from the need to 
differentiate between "normative" and "infonnative" elements; in the context 
of the standard, the activities were elements that are required to be performed, 
the tasks were elements that could support achievement of the activities. The 
use of a series of directions or prescriptions for the performance of the process 
leads to the use of the tenn "process implementation model" ~ a model 



www.manaraa.com

8. The OOSPICE Methodology Component 139 

constructed in this way provides instructions for the implementation or 
execution of the process. 

With the introduction of concepts of process assessment, the terminology 
can be further confused. The purpose of process assessment is to evaluate the 
capability of the processes under evaluation, either directly or through the 
evaluation of "organizational maturity" as with the CMM. "Process 
capability", however, is a term that has an accepted understanding in the area 
of statistical process control and reflects the probability of achieving desired 
results from the execution of a process. Within the specific domain of process 
assessment, the emphasis on statistical control disappears and the term is 
defined as "the range of expected results that can be achieved by following a 
process" (CMM for Software) or, less rigorously, as "the ability of a process 
to achieve a required goal" [3]. Process capability is evaluated by detennining 
the extent to which the process achieves its purpose efficiently and 
effectively. In order to achieve this, the process is defined, not in tenns of the 
tasks and activities required to implement it, but in tenns of its purpose and 
the outcomes of its implementation. Thus, ISO 15504, while retaining the 
definition of process from ISO 12207, defines processes in tenns of purpose 
and outcome statements. The new amendment to ISO 12207, now in the final 
stages of approval, adopts this approach to process definition, while 
maintaining the specification of tasks and activities for process execution. 

An important aspect of process assessment is the acceptance of the 
concept that a process need not be formally defined or documented in order to 
achieve its purpose. An informally perfonned process is seen as capable of 
generating the specified outcomes, although not in any planned or controlled 
manner. The establishment of a documented, and then a defined, process is 
seen as representing the achievement of significant capability. 

This concept of the "informally performed process" establishes a key point 
of potential confusion between the terminology in the standards domain and 
that employed in the work of the Object Management Group, and the OPEN 
Consortium, in deriving de facto standards for modeling languages (UML) 
and processes (SPEM). In this context, a process is seen as a documented 
series of actions; the fonnal definition of process from ISO 12207 and related 
standards equates to "activity" in the OPEN framework. The concept of the 
"infonnally perfonned process" is not found within OPEN [5]. 

Resolution of these various tenns and their appropriate meta-level 
attribution is one of the aims of this chapter. A terminology mapping is given 
in Table 1. In the following sections, we will generally use OOSPICE 
terminology (last column in table), sometimes together with the OPEN name 
in brackets. 



www.manaraa.com

140 Chapter 8 

In conclusion, then, it can be seen that the main difference in tenninology 
between OPEN and ISO standards is the definition of the word process: In 
OPEN the process is the "whole process" (OOSPICE: methodology) of an 
organization or project. In contrast, the ISO standards define process as 
components supporting the product life-cycle. In ISO 12207, a process 
consists of activities and activities consist of tasks. In OOSPICE, we skip the 
activity level. Thus, processes consist directly of tasks. Henderson-Sellers et 
al. [12] conclude that for OOSPICE a process can be defined simply by: 

A process is a set of interrelated tasks, which transform inputs into 
outputs. 

A process consists directly of tasks; but what was missing was an 
OOSPICE terminological equivalent of OPEN's use of the word process to 
mean the "whole process" of an organization or project. The tenn 
"methodology" is adopted for use in OOSPICE to describe the "process" at 
the highest, fulllifecycle scale. 

Table 1 Tenninology mapping between ISO standards OPEN and OOSPICE (after [12]) , 
Description of term Name in Name in Name in OPEN Name in 

15504 12207 OOSPICE 
Totality often Documented Software Process Methodology 
exemplified by its process Life Cycle 
documentation (external Process 
and internal) 
Collection of definitions Process N/A Set of Process Process Model 
of process components, Dimension Components 
with full documentation 
on (external) 
specification 
Something transforming Process Process Activity Process 
inputs to outputs. (a kind of 
Also, an individual, Process 
documented instance of Component) 
an M2 level definition 
Mid-range conversion N/A Activity Task Task 
of inputs to outputs 
Smaller scale N/A Task No special 
conversion of inputs to name-
outputs essentially 

steps within the 
Task 
description 

Full process in N/A N/A Process Implemented 
enactment Instance Processes 



www.manaraa.com

8. The OOSPICE Methodology Component 141 

3. SPECIFIC METHODOLOGICAL 
REQUIREMENTS RELATED TO COMPONENTS 

Setting up a methodology for component-based development assumes a 
thorough understanding of the basic concept: the component itself. 
Components have been given many different definitions in the literature. 
Absolutely essential is the explicit distinction between the component 
specification and the component implementation. Components provides the 
required flexibility: to be able to change the implementation aspects without 
any consumer of the component's services noticing this change. This makes 
the component implementation of no relevance to its consumer as long as the 
behavior does not change. This means that, as a first step in the approach, 
only component specifications are important, in accordance with the much· 
lauded principle of information hiding [13]. 

It is exactly this focus on behavior as an explicit modeling focus that 
underlines the difference between traditional software engineering and the 
component-based one. Modeling behavior as an explicit concept is quite new 
to most software engineers, although advocated in some 00 methodologies. 
Behavior-based modeling forms the cornerstone of a good CBD approach. 
Instead of concentrating on classes and their behavior, you concentrate on the 
behavior first and derive the classes afterwards. 

Behavior of components is captured in interfaces. From the identification 
of these interfaces the component specifications can be derived. This is 
achieved by applying grouping techniques like clustering. 

Behavior specification architecture is the most important engineering 
process identified in OOSPICE concentrating on the identification and 
definition of the component specifications supporting a particular aspect of 
the business. This architecture will define the overall interactions between 
different components and will ensure that their collaboration fulfils the 
required functionality. Having defined this behavior specification architecture, 
the signal for two disciplines is given: the process of realizing the defined 
behavior, the component provisioning, and the process of consuming 
component specifications into end-user applications, the application assembly. 
Each of these component-based development subtracks requires specific 
skills. Component provisioning will, most of the time, deal with persistent 
storage of information and implementation of the core business rules while 
application assembly will focus on the user interface and workflow 
management aspects. 

A component specification may have different possibilities regarding 
implementation. The process to make a cost efficient choice for the 
implementation of a component specification identifies the need for a good 



www.manaraa.com

142 Chapter 8 

provisioning strategy in order to support a cost efficient approach to 
component implementation. Finally, in OOSPICE, it is the component 
management process that keeps track of all component specifications and 
underpins a reuse strategy. 

4. CREATING A CBD METHODOLOGY FROM THE 
PROCESS MODEL 

The underlying architecture for OOSPICE is based on that of the Object 
Management Group, as exemplified through its use for defining the Unified 
Modeling Language [14]. In OOSPICE, we use the lowest three levels of the 
multi-level OMG/UML architecture and apply this to realm of process (Figure 
1). The lower level relates to processes as implemented and assessed (on a 
single project); the middle or M1 level is the "process as published". This 
might mean an organization'S process handbook. This is the (full lifecycle) 
process that is often labelled by the vendor or supplier with a well-known 
name or "branding" and should provide evelytning necessary for software 
development. This process is defined by a set of rules at the uppennost or M2 
level - this is the process metamodel. 

In OOSPICE, this architecture is refined (Figure 2), particularly at the MI 
level. At this abstraction level are a process model (or set of process 
components) together with the M2-level metamodel. The fonner will be a 
major focus of this chapter and described in more detail in Section 5. The 
Process Model has recently been baselined and work progresses on the 
Methodology towards delivering the techniques, together with construction 
guidelines, needed for its creation. 

Using the construction guidelines, a process engineer or methodologist can 
create a methodology for a specific business domain, a specific organization 
or indeed for a specific project. At the organization level, this is the 
methodology that is used repeatedly by that organization as "their standard 
methodology/process" when undertaking CBD. The methodology, also at 
level M 1, adds sequencing and configuration infonnation and constraints to 
the process components. It provides a fully documented approach for building 
component-based systems: the OOSPICE "methodology". 



www.manaraa.com

8. The OOSPICE Methodology Component 143 

M2level 
.. 

I 

instance of : 

Mllevel 

instance of : 
I 

MO level 

Figure 1. The lowest three levels of the process metamodel architecture. OOSPICE 
terminology is used. The OPEN terminology is shown in square brackets (after [J 2]) 

As well as the methodology aspect of OOSPICE, there is the capability 
assessment support. Originating from a different cultural viewpoint, 
assessment is applied at the MO level of the implemented process. An 
assessment model, based on and compatible with a Process Reference Model 
(PRM), is used for this purpose (Figure 3). To some degree, the assessment 
side mirrors the methodology side, as seen in this figure, in which there are 
two major links: a common "Implemented Processes" element and a 
complementarity between the tasks of the process construction framework and 
the differently orientated purpose and outcomes of the assessment modeling 
component of the framework. 

We should also note that the architecture of Figure 3 is technology
independent. Although it has been derived in the OOSPICE project in the 
context of CBD, nowhere is component technology critical to, or even 
influential upon, the derived architecture. What is technology-dependent is the 
detailed-level content of the models and the process elements in the 
repository. 



www.manaraa.com

144 Chapter 8 

A-oress I\b:jeI = sa 
dA-ro:ss 
O:rrp:rent 

Sp:rificatioos 
(W1at) 

I rrplarenta:f Pr"cxEss( es 

Figure 2. Details of the M2, M I and MO levels of the process construction components of the 
overal\ OOSPICE architecture (modified from [12]) 

Torgersson and Darling [15] note that the process model describes and 
structures the type of processes to be used when using a CBD approach for 
software development. At a high level, two groupings were identified 
(primarily to apportion work): processes which could be described as 
"engineering processes" (for the development and assembly of components) 
and processes which define the non-engineering processes i.e. those generally 
needed to support and place the engineering processes in an organisational 
context. These process sets have been further subdivided by classifying all the 
processes into 42 groupings (see Table 1 of Chapter 7), although this grouping 
should be regarded as a first draft and subject to change. 

Although the form of these process component specifications is unique to 
OOSPICE, their origins are mostly from best practice and from other 
documents, particularly the OPEN process components [16] and the two 
aforementioned ISO standards and their supplements. For each process 
component definition required in OOSPICE, we first inspect the two ISO 
standards [3], [4] or the OPF Repository [1] to see if such a definition already 
exists. If it does, as is often the case, then we reuse that (see [12]). We then 



www.manaraa.com

8. The OOSPICE Methodology Component 145 

identify areas not covered in these standards, which are all the specifications 
related to the emerging discipline of CBD. These are then written from 
scratch based on existing industry best practice and published theoretical and 
empirical research, especially from Catalysis [2] and industry experience of 
Computer Associates and colleagues. The result is a document that is 
comprehensive in its coverage of all CBD-related process component 
specifications but does not attempt to fully describe the internal details - to be 
addressed later in the development of the OOSPICE Methodology. This is 
then translated into purpose and outcomes and augmented as necessary to 
provide a compatible metamodel for the process assessment component of 
OOSPICE. 

Process Component Repository 

has elements from 

Process Model and 
CSO Methodolo 

is instance of 

Implemented Processes 

is assessed using 

Assessment Model 

is compatible with 

Process Reference Model 

Figure 3. The overall architecture of the M I level of OOSPICE (modified from [12]) 

The CBD Process Model is defined in terms of Name; Purpose; Outcomes 
and Tasks. A Process Reference Model (PRM), on the other hand, is defined 
only in terms of Name; Purpose and Outcomes (e.g. [15]). Given the Process 
Model, the PRM is thus readily derivable by omitting the Tasks. 

It is the PRM that is the starting point for the OOSPICE capability 
assessment model (Figure 3). A process reference model is one that defines 
those processes that are to be assessed by providing basic definitions of these 



www.manaraa.com

146 Chapter 8 

processes. An Assessment Model is then created to be compatible with the 
PRM by adding indicators of capability to a subset of processes of the PRM. 
These indicators are used in calculating the capability profile for each process 
in the assessment model. The capability profile evaluates the maturity and 
success of the implemented process in terms of these quality indicators. An 
assessment model thus draws from the process reference model and embeds 
the measurement framework of, say, ISO 15504 [17]. The result is known as a 
capability rating and the data created by applying the assessment procedure to 
the enacted project are known as the "capability profile" of that organization. 
For further details see Chapter 7. 

On the other hand, it is the Process Model, not the Process Reference 
Model, that is the basis for the development of the methodology (see Figure 
2). To create this, each of the Task outlines of the Process Model will be 
examined and, as necessary, fleshed out. More importantly, the Techniques 
appropriate to all these Tasks will be elucidated, again from best practice, 
including documented techniques in the 00 and CBD literature. However, 
fleshed out Tasks and Techniques still lack the sequencing necessary for 
process enactment. The final task of OOSPICE's methodology development 
component will be to investigate appropriate process sequences and also to 
create a set of construction guidelines that will permit the process engineer to 
fabricate appropriate processes which extend those that the OOSPICE 
methodology development team will provide as exemplars. 

5. THE UNDERPINNING METAMODEL 

Within the three layer architecture of Figure 1, it can be seen that the 
process components are all instantiated from a single metamodel (at the M2 
level). Previous SPI approaches have not included such a metamodel for 
process or capability assessment. One original aspect of the OOSPICE project 
is that it will follow the lead taken by OMG and CDIF in formally identifying 
an appropriate metamodel (at the OMG M2 level) to create a formal 
consolidation for the process model and process capability assessment. 

The methodological aspects can be well modeled by a typical 00 process 
metamodel. Here we use the OPEN Process Framework (OPF)'s metamodel 
as a starting point. In addition, a number of additional metatypes related to 
Work Products specific to CBD have been identified and an initial draft [18] 
has been distributed internally to the OOSPICE team members. Together, this 
work and the OPF, supplemented if necessary by concepts from the OMG's 
SPEM architecture [19], are being used as the basic input to the creation of 
the underpinning metamodel for the methodological aspects of the OOSPI CE 
project. Finally, capability assessment concepts need to be added to this 
evolving metamodel - something not previously attempted. 



www.manaraa.com

8. The OOSPICE Methodology Component 147 

When finalized, the metamodel, process model, reference model, 
capability assessment model and methodology will be offered to ISO for 
international standardization. 

6. CONCLUSION 

The OOSPICE project is based on Component-Based Software 
Engineering principles. It encompasses processes and process engineering, on 
the one hand, and process capability assessment on the other. Bringing 
together these two subdisciplines of software development, in this chapter we 
have outlined the necessary mappings between differing tenninologies and 
detailed the OOSPICE model architecture in which we are developing not 
only a CBD methodology and underpinning metamodel and capability 
assessment model and methodology (see Chapter 7) but also a process 
reference model (PRM) and a CBD process model (which encompasses much 
of the PRM). When the descriptions of the processes are expanded into 
purpose, outline and tasks they fonn the process model whereas the subset 
using only purpose and outcomes forms the basis for the assessment strand of 
OOSPICE. Further development of this strand as well as most of the CBD 
methodology strand are the topic of ongoing work. It is intended that the final 
results will be offered to ISO for standardization. 

ACKNOWLEDGEMENTS 

This is Contribution Number 02/04 of the Centre for Object Technology 
Applications and Research. 

The OOSPICE Project is developed as EU-funded shared-cost RTD 
project under contract number IST-1999-29073 within the European 
Commission's Fifth Framework Programme. 

The OOSPICE project partners are: 
- Institute of Systems Sciences, Department of Systems Engineering and 

Automation, Kepler University Linz (Austria) (Coordinator) 
Computer Associates (Belgium) 

- WAVE Solutions Infonnation Technology GmbH (Austria) 
Huber Computer Datenverarbeitung GmbH (Austria) 

- University of Boras (Sweden) 
- Volvo Infonnation Technology (Sweden) 
- Griffith University (Australia) 

Centre for Object Technology and Application Research (Australia) 
We also wish to thank the Australian Research Council for funding the 

Australian contribution to this project. 



www.manaraa.com

148 Chapter 8 

This chapter is based in part on material published in Henderson-Sellers et 
al. [12], [20], for which we also thank Jom Bohling and Terry Rout. We also 
acknowledge the valuable work contributed to the Process Model by members 
of Middlesex University, UK. We also wish to thank Cesar Gonzalez-Perez 
and Tom McBride for their helpful comments on an earlier draft of this 
chapter. 

REFERENCES 

[I] Firesmith, D.G. and Henderson-Sellers, B., 2002, The OPEN Process Framework. An 
Introduction, Addison-Wesley, Harlow, UK 

[2] D'Souza, D.F., Wills, A.e., 1999, Objects, Components and Frameworks with UML. The 
Catalysis Approach, Addison-Wesley, Reading, MA, USA, 785pp 

[3] ISO/IEC TR15504, 1998, Information Technology - software process assessment, in 9 
parts, International Standards Organization 

[4] ISO/IEC 12207, 1995, Information Technology - software lifecycle processes, International 
Standards Organization 

[5] Graham, I., Henderson-Sellers, B. and Younessi, H., 1997, The OPEN Process 
Specification, Addison-Wesley, UK, 314pp 

[6] Deming, W.E., 1982, Out of the Crisis, MIT Center for Advanced Engineering Study, 
Cambridge, MA, USA 

[7] Crosby P.B., 1979, Quality is Free: the art of making quality certain, New American 
Library, New York, NY, USA 

[8] Paulk, M.e., Weber, e.V., Garcia, S., Chrissis, M.B. and Bush, M., 1993, Key Practices of 
the Capability Maturity Model, Version 1.1, CMU/SEI-93-TR-25, Software Engineering 
Institute, Carnegie Mellon University, Pittsburgh, PA, USA (February 1993) 

[9] IEEE Std 610.12-1990, IEEE Standard Glossary of Software Engineering Terminology 
[10] IEEE Std 1220-1998, IEEE Standard for Application and Management of the Systems 

Engineering Process 
[II] Electronic Industries Association. Systems Engineering Capability Model (EIA/IS-73I ), 

1998, Electronic Industries Association, Washington, D.e., USA 
[12] Henderson-Sellers, B., Bohling, 1. and Rout, T., 2002a, Creating the OOSPICE model 

architecture - a case of reuse, Procs. SPICE 2002, Venice, Palazzo Papafava, March 13-15, 
2002 (ed. T. Rout), Qualital, Italy, 171-181 

[13] Parnas, D., 1972, On the criteria to be used in decomposing systems into modules, 
Comillunications of the ACM, 15(2), 1053-1058 

[14] OMG, 2001 a, OMG Unified Modeling Language Specification, Version 1.4, September 
2001, OMG document formallOI-09-68 through 80 (13 documents) [Online]. Available 
from: http://www.omg.org 

[15] Torgersson, 1. and Dorling, A., 2002, OOSPICE - thc road to qualitative CBD, Procs. 
SPICE 2002, Venice, Palazzo Papa/ava, March 13-15,2002 (ed. T. Rout), Qualital, Italy, 
183-190 

[16] Henderson-Sellers, B., Simons, A.J.H. and Younessi, H., 1998, The OPEN Toolbox of 
Techniques, Addison-Wesley, Harlow, UK 

[17] ISO/IEC 15504,2002, International Standards Organization (in press) 
[18] Saro, D., 2002, A UML profile for platform independent component specifications, 

internal OOSPICE project team document, 31 January 2002 



www.manaraa.com

8. The OOSPICE Methodology Component 

[19] OMG, 2001b, OMG, The Software Process Engineering Metamodel (SPEM), revised 
submission, April 2, 2001, OMG document adl2001-03-08 

149 

[20] Henderson-Sellers, B., Stallinger, F. and Lefever, B., 2002b, Bridging the gap from 
process modeling to process assessment: the OOSPICE process specification for 
component-based software engineering, Procs. Euromicro Conference, IEEE Computer 
Society Press, Los Alamitos, CA, USA 



www.manaraa.com

Chapter 9 

QCCS: Quality Controlled Component-Based 
Software Development 

Torben Weis l , Noel Plouzeau2, Gabriel Amoros3, Petr Donth4, Kurt Geihs\ 
Jean-Marc Jezequee, Anne-Marie Sassen3 

1 TU-Berlin, Germany; 21RISA, Rel1nes, France; 3SchlwnbergerSema, Spain; 4KD Software, 
Czech 

Abstract: QCCS is an European 1ST project that is developing and evaluating a new 
design methodology for software components. The QCCS methodology 
simplifies the development process of components that have formally specified 
non-functional properties. The approach is heavily based on UML because it 
tries to tackle the problem already during the design phase. QCCS provides a 
means for modelling contracts aware components and their assembly in UML. 
Besides the specification process we support the concrete design and 
implementation of such components. 

Key words: Software design, UML, AOP, contracts, quality of service 

1. INTRODUCTION 

Since software projects became so complex that it took mUltiple months to 
finish them, scientists started to search for technologies and methodologies 
which allowed producing high quality software in time and on budget. 
Component based software development has the potential to bring us a great 
step forward in this direction. However, there are several shortcomings in 
current component models. First of all, components are not well enough 
specified. Currently their interfaces provide syntactical information about 
which methods are available and how to invoke them. Any infonnation about 
the non-functional properties of a component is missing. Classical non
functional properties are time and space complexity of the algorithms used. 
But in the presence of distributed component systems quality aspects like 



www.manaraa.com

152 Chapter 9 

security, availability, bandwidth, capacity etc. become more and more 
important. 

In this article we propose to tackle non-functional properties already in the 
design phase of a component. Other approaches use extensive testing and 
formal verification. Both are important instruments in achieving high quality 
components. However, testing can only detect errors. It is of limited help 
during the design and implementation phase. Formal verification is 
unfortunately still very difficult - especially for systems of non-trivial 
complexity - and needs very skilled developers. 

Our approach can be subdivided into two steps. First, we need to specify 
components in a more precise way, which includes clearly tagging the non
functional properties. Therefore, we will use the concept of component 
contracts. Second, we show how to reuse existing solutions that implement 
non-functional properties or - if no such solution exists - how to create a 
reusable one. To achieve this we will employ principles of the AOP: 
separation of concerns and aspect weaving. We will elaborate the details of 
AOP in Section 4. 

In contrast to formal verification our methodology can not absolutely 
guarantee that a component actually delivers the quality level that is written in 
its specification. We need a blueprint that implements the required service 
level. This solution is parameterised so that it can be applied in similar 
circumstances. The correctness of the component follows from the correctness 
of the template solution. The correctness of the template solution can be 
ensured using testing or verification, code reviews, etc. 

The advantage of our approach is three fold. First, it is not likely that 
developers will make the same mistake twice. Once we have a template 
solution for availability, security, bandwidth reservation and so on we can 
easily apply it to new components. These components will then have 
guaranteed non-functional properties. Second, we separate the design and 
code that deals with a non-functional property into aspects. That makes the 
design more concise. Finally, our approach includes specifying the non
functional properties in a formal way. In this way we can determine during 
deployment whether the functional and non-functional properties of two 
components allow them to interact correctly. 

A special focus is on the ease of use. Our methodology should be easily 
applicable to different software development processes. Additionally, we 
want to lower the learning barrier for developers. The methodology should be 
easily understandable for developers who know about object orientation and 
modelling using UML. 

Let us give a brief overview of this chapter. The next section illustrates 
how UML can be extended with the concept of component contracts in 
general. In Section 3 we focus on quality of service contracts and their 



www.manaraa.com

9. QCCS 153 

representation in UML. Section 4 explains how to implement the specified 
contracts. Finally, in Section 5 we give a brief summary of our approach. 

2. MODELLING CONTRACT AWARE 
COMPONENTS 

Components are often underspecified, which makes their proper reuse a 
risk in the development process. To remove this shortcoming a more precise 
specification is needed. Interfaces as we know them from object oriented 
programming provide a so called functional specification of the component. 
But there are non-functional issues which have to be specified, too. 

Prominent examples for non-functional aspects of a component are 
performance and security. For instance, a component customer may be 
interested in knowing the time complexity of a component's computation (e.g. 
O(log(n)) or 0(n2)). Or a component user may want to know whether the 
component encrypts the data that it sends over the network. Along the same 
vein, knowledge of bandwidth and latency properties of a component is an 
important issue for component deployment. 

Some conceptual tools have been devised to support these various aspects 
of component properties: instead of just using component interfaces it is 
possible to extend them with contracts. A contract (as defined by Bertrand 
Meyer 0) greatly extends the component specification precision. In 0, 
contracts are divided into four different levels: 
- syntactical contracts, 
- behavioural contracts, 
- synchronisation contracts, 

quality of service (QoS) contracts. 
Interfaces as offered for example by C++ only cover level one. They 

describe which methods are available and the structure of incoming and 
outgoing parameters. In Java, the interface may be enriched with 
synchronisation specifications (level 3). But none of the mainstream object 
oriented programming languages features solutions for level 2 or 4. 

Furthermore, we will make the requirements of a component explicit so 
that the developer can see as early as possible what it takes to get the 
component up and running. For example a component implementing an online 
shop offers an interface for ordering goods. But most likely the component 
needs some other component that offers a database interface so that the e-shop 
can store the customer data. 

The designer should be able to deduce easily from the component's 
specification whether the e-shop component has a dependency on the database 
component. Most currently used component models do not make these 
dependencies explicit. Component users have to search for this information in 



www.manaraa.com

154 Chapter 9 

the written documentation (when this information is supplied at all). Good 
component architectures should not only expose and specify the contracts 
they offer but also make explicit the contracts they require from others. 

2.1 An example 

To support our idea we give below a toy design of an e-commerce 
application. One of its central components is the e-shop component. It offers 
two interfaces. The CatalogAPI interface allows the retrieval ofa list of all 
products, their detailed description and availability and a list of "real" shops. 
The PaymentAPI interface deals with e-payment. 

E-Shop «interface» 
- f. CatalogAPI 

( ( «interface» 
}Shoppingr- - _[. PaymentAPI 

./ ) 
I 

(seC:i~f- _ --$ EnclYplion I 

) / 

Figure 1. Contract aware components 

The P a ymen tAP I interface is valid only in some situations, for instance 
only if data exchanges can be safely encrypted over the communication link. 
In our example this is defined by the Shopping compound contract that is 
depicted like a convoluted sheet. It offers the PaymentAPI interface 
(depicted by a dashed line with a closed arrow). On the other side it requires a 
Securi ty contract (depicted by a dashed line with an open arrow). Finally, 
the Encryption component fulfils (offers) the Securi ty contract. 

One goal of our notation is to stay as close to standard UML as possible. 
We did not change the notation for components or interfaces. Even the arrow 
types are standard UML. A dashed line with an open arrow that connects a 
component with an interface models the fact that the component depends on 
this interface. A dashed line with a closed arrow between a component and an 
interface denotes that the component realises this interface. The only new 
thing developers have to learn is that there exist contracts that can specify 



www.manaraa.com

9. QCCS 155 

non-functional properties. In fact an interface is just a special kind of contract. 
However, in order to stay close to the UML notation we did not alter the 
notation for interfaces. 

2.2 Compound contracts 

In more complex settings than those in the above example the 
relationships between required contracts and offered ones can become quite 
extensive, especially when level 4 (those with non functional properties) 
contracts are involved. When dealing with more complicated components we 
will discover that a set of contracts may have exclusive-or semantics. That 
means only one contract can be active at a certain time. These contracts often 
share common subparts. To make this modelling issue more explicit we 
introduced the concept of compound contracts. In our example the shopping 
contract is such a compound contract, which is a composition of other 
contracts. A compound contract can play two different roles. It is either a 
required or an offered contract. Another case where compound contracts are 
useful is the combination of functional and non-functional contracts. For 
example some component demands a certain throughput for an SQL interface 
it is using. By grouping the interface and the non-functional contract in a 
compound contract we can express this relationship. 

The exclusive-or semantics can be expressed using UML stereotypes 
across several dashed lines. In UML this is already done with associations. 
For example you can model that an instance of some class may participate in 
one of several associations but not in two of them at the same time. We just 
applied this concept to contracts. 

[J-----1>( Sal f' -----A~atabas/~ ___ ~ 
r------'-------, J «fulfills» ) t -~ 

MyDatabase /. 'I' / I 

! f i «fuIfllls:>> I 'V (/ 

I i Ad' -------6 ) Content 0------1>71. min ) 

. I / 
«fulfills» I 

,1/ 

SSl L--- ____ is.'k'" f~ ---¢l HTTP S.".~ - - >(..,..,,,!( 
I «fUlfillS») ) ~ J) / 

Figure 2. A component assembly 



www.manaraa.com

156 Chapter 9 

Another reason for using compound contracts is that they enable very high 
level views of components and their contractual relationships. A real life 
component will offer a rich set of interfaces and non-functional contracts. 
Now imagine a diagram with mUltiple components each offering and 
requiring a large set of contracts. The diagram will be very large and hard to 
understand because it is crowded with heaps of boxes and lines. 

Grouping contracts that are related in some way or the other is a better 
approach for abstraction. This grouping can be done using compound 
contracts. Now it is possible to show in the diagram only the components and 
the compound contracts. Details that distract the diagram reader are hidden 
(abstracted) in these diagrams. Nevertheless, the diagram still provides the 
reader with important information about which components are connected. 
Figure 2 illustrates how such a diagram might look. 

In this figure, the database MyDatabase realises two contracts, SQL and 
Admin. When taken together they fulfil the Database contract of the 
Banking component. This Banking component also offers another 
contract called Content. This one matches the Servlet contract of the 
HTTPServer. Finally the HTTPServer requires some sort of sockets. This 
contract is directly fulfilled by the SSL component. The last observation 
shows that it is possible to suppress contracts entirely. In this extreme case 
two components are directly connected by a fulfilment relationship. In terms 
of the UML the string f ul f i 1 s is just a stereotyped dependency. 

2.3 Contract types and contracts 

In the previous sections we used the word "contract" with a somewhat 
vague meaning. However, when we want to model systems with components 
we need to be more precise. It is crucial to distinguish between contracts and 
contract types. Contracts and contract types are similar to the concept of 
objects and classes. Until now we have used the word "contract" where 
"contract type" would have been more appropriate. 

In the static model of Figure 1 we use classes and contract types. 
Contracts are instantiations of contract types and exist at run time. Since the 
UML provides a means for modelling instances, this allows us to describe the 
state of a system at a certain point in time or to specify system state evolutions 
over time. Therefore, we provide a means for modelling contracts in addition 
to contract types: contract entities coexist with component instances III 

deployment diagrams. 

2.4 Contract negotiation 

As we will describe in more detail in the next section it is possible to 
parameterise contracts. While typical interfaces are not subject to 
parameterisation during the design and implementation phase, quality of 



www.manaraa.com

9. QCCS 157 

service contracts (level 4) are just templates that have to be filled at run time 
with concrete values. For example in a concrete application some component 
might not be able to ensure availability without knowing its run time 
environment and this environment's QoS. 

This means that contract set up at run time is more than simply connecting 
an offered contract type instance with another required contract type instance. 
A concrete contract - the instantiation of a contract type - has to be 
negotiated between both contracting parties. This can happen at different 
points in time. Some of these points precede the application launch time: they 
are part of the design phase, the implementation phase or the deployment 
phase. A computer aided software engineering (CASE) tool can assist the 
developer in configuring the contracts. 

However, sometimes this static contract computation is not possible, since 
the quality level that can be offered depends on variables that can change 
during runtime such as network load, CPU load, memory usage, 10 traffic etc. 
Consequently the concrete contracts can only be negotiated during runtime. 

To model this difference we added an attribute associated with every 
contract that indicates whether the negotiation is static or dynamic. Static 
means that the contract is configured before the application starts while 
dynamic contracts are negotiated at runtime. 

3. MODELLING QOS-CONTRACTS 

In the previous section, we outlined how contracts can be bound to 
components. However, we did not yet talk about the internals of such 
contracts. In the QCCS project we focus especially on QoS (level 4) contracts. 

3.1 QoS dimensions 

Typically a QoS contract type is subdivided into several QoS dimensions. 
As a first approximation we can think of dimensions as attributes in classes. 
They have a unique name and an associated type. The reasoning behind the 
choice of the word dimension is that a contract type can be thought of as a 
vector space. Therefore, the dimensions span a vector space and a contract 
can be thought of as a point in the vector space spanned by its contract type's 
dimensions. 

When thinking about dimensions in physics we will notice that dimensions 
typically have a direction. The same applies to QoS dimensions. Their 
direction indicates in which direction the QoS becomes better. For example 
bandwidth is better the higher it is. On the other hand latency is better the 
lower it is. By tagging the direction of every dimension we enable weighting 
algorithms to choose the best one from a set of values. This becomes 



www.manaraa.com

158 Chapter 9 

important when a component offers different contracts for one contract type 
and the other party wants to determine the best contract automatically. 

Another observation that can be drawn from physics is that dimensions 
usually have a unit attached to them. There are two reasons for introducing 
units. One has to do with scaling. We can use inches, meters, and miles. They 
have in common that they are units for distances but they differ in a constant 
coefficient. For our problem it would be enough to allow exactly one of these 
units so that all parties agree on the interpretation of the numeric value. 

The other reason is to attach some sort of semantics to the dimension. 
When reading something like 500 ME / s we automatically understand that 
we are talking about some sort of throughput. Units can help developers to 
understand what a dimension is all about. 

Finally, we need to justify that dimensions need a type just like attributes. 
Types are important even for numerical values since they limit the precision. 
But there exist some QoS dimensions, which are discrete instead of 
continuous. For example it does not make sense to demand something like 2.5 
replicas of a service. Obviously this dimension should be restricted to integer 
values. In other situations the type is simply an enumeration. 

To sum up: A dimension is a 4-tuple consisting of: name, type, direction, 
and unit. 

3.2 Determining QoS dimensions 

An important part of the specification job is to define the contract types. 
As we will outline in this section it is unlikely that there will ever be one 
contract type specification for each non-functional- quality of service related 
- problem. 

The whole purpose of contracting is to constrain the minimum quality of 
service. In order to detennine a set of dimensions that allows us to perform 
contracting we might want to look at the problem of measuring. The delivered 
quality has to be measurable somehow otherwise it is not reasonable to do any 
contracting. So it seems to be straightforward to look at the variables we can 
actually measure. Unfortunately we can not deduce the dimensions of a 
contract type entirely from these variables. The values of the variables 
describe the quantified QoS that is actually delivered by the service. In the 
ideal case a diagram showing a measuring-variable together with the time axis 
will show a horizontal line. In this case the delivered quality is always exactly 
the quality negotiated between client and server. Unfortunately we do not 
have these horizontal lines in real life environments. 

So we have to define in a contract what we still consider to be acceptable 
and what we have to reject. From a mathematical point of view there are an 
unlimited number of possibilities for specifying these constraints. Some 
mathematical concepts are frequently used in this situation. We could describe 



www.manaraa.com

9. QCCS 159 

minimum boundaries, which must not be crossed. Or we can demand that the 
average quality measured over a certain time range must not fall below a 
certain value. 

However, in other situations different constraints may be useful. For 
instance, one may be interested in the QoS availability category. We can 
determine whether the service is actually available or not. Unfortunately our 
measure can be based on a boolean variable only: either the service is 
available for our requests or it is not. Nevertheless we can have different 
demands: 

the service must not be continuously unavailable for longer than t minutes; 
the accumulated downtime in one month must not be longer than 10 hours 
but no more than 5 hours per day; 
the service has to be continuously available for at least t hours per day. 

There may be many possibilities, some of them are really useful ones in 
certain situations. In practice, this high number of possibilities may limit the 
interoperability. If everybody defines his own set of contract types then we 
may have a hard time to smoothly integrate commercial off the she?f(COTS) 
components in the development and deployment process. Weare confident 
that it is possible to find definitions that satisfy the majority of cases. 

Another problem that we encountered is that it is sometimes hard to 
sample and compute one of the measuring variables. An example is security. 
It is actually not possible to measure security in the same way as performance, 
bandwidth and the like. So we use values which are more closely bound to the 
mechanism that is used to provide a certain QoS category. Possible 
dimensions are the key length used for encryption or the encryption algorithm 
used. 

3.3 QoS contract types 

A contract type is a composItlOn of several dimensions. However, 
grouping a set of dimensions is not the sole purpose of a contract type. Its 
main contribution is to assign semantics to the dimensions. There are many 
possible ways of expressing semantics. For example we could try to model the 
semantics using state charts and interaction diagrams. Or we could use a 
formal specification language. In our approach it does not matter how the 
semantics are specified as long as they are precise. The reason is simply that 
none of our tools will read the semantics. It is up to the developer to read 
them, understand them and provide a correct implementation. Other 
approaches that are based on testing or formal verification do of course 
require a notation of semantics that can be understood by a tool. We believe 
that the essential requirement is that the component developer and the person 
deploying the component agree on the semantics. 



www.manaraa.com

160 Chapter 9 

Figure 3 shows our notation for contract types [2]. The notation closely 
follows the UML notation for classes [6]. The major difference is that the 
shape of a component is convoluted. The dimensions are listed in the 
compartment below the contract type's name. 

Availability .I 
) 1'uptime: Integer [F'ercent] / 

Figure 3. Notation for contract types 

The notation for dimensions resembles partially the UML notation of 
attributes with some extensions. The arrow indicates the direction. In the 
above example higher values are considered to be better than lower ones. 
Then follows the name and the type that is used to store values of this 
dimension. On the right hand side in brackets you can find the unit of the 
dimension. The possible units are defined by an enumeration. 

3.4 Instances of contract types 

The notation for contract type instances (in short: contracts) resembles the 
UML notation for objects. The first line shows the name of the contract and -
separated by colon - the name of the corresponding contract type. This string 
is underlined like the names of objects in UML. 

MyContract: Availability / 

,/ uptime = 98% 
L/ ___________ / 

Figure 4. Notation for contract type instances 

The compartment below the name holds all dimension values. The first 
string is the name of the corresponding dimension followed by a textual 
representation of the value. Finally, the unit of the dimension is shown. 

4. REALISING CONTRACTS 

Until now we discussed how to model contract aware components using 
UML. This results in a more precise specification of components and 
component assemblies. However, at some point in time these components 
have to be implemented and we want to be sure that they actually deliver the 
service level that their specification promises. 



www.manaraa.com

9. QCCS 161 

As outlined in the introduction some well established approaches in this 
area are testing and verification, but they have several shortcomings. They can 
not help during the design phase and they are quite complex to apply to real 
scale designs. Our approach is to reuse existing solutions, which have 
guaranteed properties. In an ideal case an automated tool can read in the 
specification and produce a skeleton that already implements the non
functional properties specified in the component's contracts. 

4.1 Cross-cutting, scattering and AOP 

The major problem that needs to be solved here is the cross-cutting and 
scattering. The design pieces and code fragments that realise a certain non
functional property are usually scattered across the entire design and code. It 
is usually not possible to gather these pieces in one class. Just think about the 
availability example presented above. In order to realise availability we need 
a lot of design and code. First of all we need a mechanism that can realise 
availability. Let us consider some kind of fault tolerant load balancing. We 
need to use the concept of replicas and a sequencer. This will for example 
require some work in the area of the middleware. However, that is not 
enough. In addition we will need some algorithms that perform the 
negotiation at runtime because the quality of service needs to be monitored. 
Finally, a customer may have to pay for the service delivered by the 
component. In this case a link to the billing facility of the company is needed. 

This example shows that we will have to handle concepts in completely 
different areas of the design. This is exactly the problem of cross-cutting and 
scattering. Therefore, it is almost impossible to separate these pieces using 
standard object oriented techniques. 

A modern solution to this problem is aspect orientation. The major benefit 
of aspect orientation is the separation of formerly scattered pieces into 
aspects. Aspect oriented programming (AOP) allows us to group all design 
pieces and code fragments that deal with the realisation of a certain non
functional property in one place. This is the major prerequisite for reuse, 
because a designer cannot reuse something in a new design that can not be 
clearly isolated in an existing design. 

However, there is a price to pay for this advantage. Humans find it very 
convenient to work with design and code that is structured by the principles of 
aspect orientation, since the entire structure becomes clearer. On the contrary, 
most software tools do not take aspect separation into account. Therefore, it is 
necessary to invert the process of separation. This process is called aspect 
weaving. Once the aspects are woven into the remaining design and code we 
can continue using our existing tools such as compilers and interpreters. 



www.manaraa.com

162 Chapter 9 

The major challenge in every aspect oriented approach is to build a good 
aspect weaver. Since we still target the design phase of a component we will 
have to provide an aspect weaver that can weave UML models. 

4.2 Reusable aspects 

Aspect orientation brings us a great step forward in our attempt to isolate 
code and design pieces. However, AOP driven technologies like Aspect] 0 do 
not foster reuse of aspects in a different context, because that is not the 
original goal of AOP. Instead it is possible to exchange one implementation of 
an aspect with another one. That is the opposite of what we want to do. We 
intend to use one aspect for several targets while classical AOP uses different 
aspects for one target. 

Consequently it is not surprising that a simple port of the AspectJ ideas to 
UML won't be enough. The main problem is that aspects contain information 
that tells the aspect weaver where they bind to their target. This is out of 
question for our approach since that contradicts our idea of aspect reuse for 
different targets. One conclusion that can be drawn from this is that the 
aspects may not contain any information directly related to their target. 

Obviously, some information about the correspondence of target and 
aspect is required, otherwise the aspect weaver can not know how to weave 
the aspects into the target. The basic idea is to model so called aspect
invocations that describe where to weave which aspects into the target. In this 
way we can use an aspect very much like a function. We can invoke it and 
pass as arguments the points in the target where the aspect is to be woven in. 
To sum it up, we end up with three categories: the target, the aspects and the 
invocations which bind both together. 

4.3 Aspect signatures 

Since we consider aspects as functions we have to deal with the signature 
of an aspect. A function invocation passes a set of arguments to the invoked 
function. These arguments must comply in type and structure to the signature 
of the function invoked. Consequently, we have to provide a means for 
defining signatures of aspects. This is not part of Aspect] since these aspects 
know by themselves where they have to be woven into the target. Logically, 
there is no need to pass arguments and consequently no need for a signature. 

Function signatures can become almost arbitrary complex, as languages 
like C++ show. We have to examine how much complexity is actually 
needed. The least two things that a signature should describe is 
1. how to structure the arguments; 
2. the kind of argument expected. 



www.manaraa.com

9. QCCS 163 

The most simple argument structure is a simple list. The other extreme is an 
arbitrarily shaped graph. We investigated a set of examples to determine our 
requirements. We concluded that the simple list structure is not at all 
sufficient. Suppose we have to pass to an aspect a set of classes and a subset 
of each class' methods as arguments. By using plain parameter lists only it is 
impossible to pass this information to the aspect. We decided to allow 
arbitrarily shaped trees as argument structures. This is very flexible but still 
much easier to deal with when compared with graphs. 

The second topic of interest is the type of a parameter. In object oriented 
languages this type is a combination of a class and sometimes additional 
information that tags a parameter as pointer, array or reference. The types of 
arguments we want to pass to our aspects are elements of a UML model such 
as methods, classes, states of a state chart and so on. Consequently, we have 
to refer to the UML meta-model. The meta-model describes which concepts 
are provided for modelling. Such concepts are classes, methods, parameters, 
states, state transitions and the like. Obviously this corresponds exactly to our 
parameter types. The type of an aspect parameter is given by a UML meta
class. Additional concepts like arrays are not needed since they can be 
expressed in the tree structure. The following examples show what the 
parameter list ( or signature) of an aspect can look like. 

MyClass: Class, OtherClass: Class 
Iface: Class, {Op: Operation} 
Iface: Class, {Get: Operation, Set: Operation} 
MyClass: Class, {Op: Operation, {P: Parameter}} 

The first signature above describes that the aspect expects as arguments two 
classes of the UML target model. The second one features parameters with a 
l:n relationship which is expressed by the curly braces. For every class we 
may pass a set of operations. The third signature declares that we may pass a 
set of tuples for each class. Each tuple must contain exactly two operations. 
Finally, the fourth signature shows that parameters may be nested arbitrarily 
deep. In this way we can pass arbitrary tree structures as arguments to an 
aspect. 

Now we want to look at the invocation of an aspect and how to specify the 
arguments that are passed along with every invocation. Assume a target 
model as specified in Figure 5. Furthermore, we assume the following aspect 
signature: 

C: Class, {O: Operation} 



www.manaraa.com

164 

Tarqet Modell 

SomeClass 

+calculate( ) 
+print( ) 

Figure 5. Target model 

A possible invocation of the aspect can look like this: 
(SorneClass, (calculate, print}) 

Chapter 9 

This will assign SorneClass to parameter C. The two methods 
calcula te and print will be mapped to the parameter O. Another way of 
thinking about this is to consider the arguments as a tree. SorneClass is the 
root node and the two methods are the leaves of the tree. 

4.4 Aspect notation 

Our notation for aspects resembles the standard UML notation for 
packages. The signature appears in the upper right comer in a box surrounded 
by a dashed border. UML users will be familiar with these sort of boxes. They 
are used for template classes in UML, too. These visual similarities are used 
on purpose, since the signature is some sort of template parameter. However, 
there are major differences between our aspects and UML class templates. 
The two most obvious differences are that UML templates may only have 
simple parameter lists and do not at all support the concept of wildcards. 



www.manaraa.com

9. QCCS 

Target Modell 

SomeClass 

+calculate( ) 
+print( ) 

I 
I{SomeClass ,*} 

I 
MyAspectl c:- (i~~,- {O-:-O-p~~~ti~~}: 

1 ________________________ I 

Figure 6. Aspect notation 

165 

Figure 6 shows a small example. We can see one invocation of the aspect. 
The invocation is modelled as a stereotyped dependency between the target 
model and the aspect. The arguments are written on top of the invocation 
arrow. 

The example does not show what is inside the aspect. We are working on 
an UML based description for aspects and a corresponding aspect weaver. 
Modelling the aspect interior is then almost trivial if you already know how to 
use the UML. 

5. SUMMARY & CONCLUSIONS 

We presented a way of specifying contract aware components. In doing so 
we placed a special emphasis on quality of service contracts. For this purpose 
we extended the UML with several stereotypes and some new notation. Our 
approach does not unconditionally require the new notation, but it 
significantly helps to increase the readability of the diagrams. Standard UML 
tools can nevertheless be used to model the same things. The only drawback 
is that the developer will face the UML stereotypes directly. In our modelling 
tool these are hidden behind the new notation. 

Once the specification phase is finished we have to deal with standard 
class diagrams, state charts etc. A generator produces a model skeleton from 
the specification. If the generator knows of some aspect that can realise a 
certain contract type then it would integrate the correct invocations of this 



www.manaraa.com

166 Chapter 9 

aspect into the skeleton. Otherwise it generates an empty aspect and it is up to 
the developer to provide a first solution for this contract type. The generator is 
not very complex and it needs only minor (if any) modifications to integrate 
new aspects for new contract types. In this way it is very easy for 
development teams to extend their toolset with new aspects. 

In this chapter we explained how to declare aspects and how to model 
their invocation. However, we did not talk about how to define an aspect. 
There are different possibilities for doing so. We decided to stay with the 
UML. This means the interior of an aspect looks very much like a nomlal 
UML diagram with a few extensions. 

We think that the QCCS approach brings us a great step forward in the 
direction of quality controlled software engineering. It is a very practicable 
approach, which has its merits and shortcomings. The major limitation is that 
the first implementation of a contract type needs to be con-ect. However, the 
QCCS methodology does not provide a means for proving the con-ectness of 
this implementation. On the other hand one contract type is usually used in 
many different projects. Thus, the chances of reuse are enormous. This is 
especially important, because the QCCS methodology can guarantee the 
con-ectness of all components with respect to a certain contract type as long as 
the single aspect is con-ect. Instead of verifying each single component it is 
enough to verify the single aspect. 

REFERENCES 

[I] Kiczales. G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. and Griswold, W .. An 
overview of AspectJ. In Proceedings of the European Conference on Object-Oriented 
Programming, Budapest, Hungary, 18-22 June 2001. 

[2] Weis, T, Becker Ch., Geihs, K. and Plouzeau, N.,An UML Metamodelfor Contract Aware 
Components, Proc. ofUML'2001 conference. 

[3] Meyer, B., Applying Design by Contract. IEEE Computer Special Issue on Inheritance and 
Classification, 1992. 25( 10): p. 40-52. 

[4] Beugnard, A., et ai., Making Components Contract Aware. IEEE Computer Special Issue on 
Components, 1999.13(7). 

[5] Frolund, S. and J. Koistinen, Quality of service Specification in Distributed Object Systems. 
Distributed Systems Engineering Journal, 1998.5(4). 

[6] Object Management Group, OMG Unified Modeling Language Specification, Version 1.4, 
September 2001. 



www.manaraa.com

Chapter 10 

Components for Embedded Devices 
The PECOS Approach 

Thomas Genssler, Alexander Christoph, Michael Winter and Benedikt Schulz 
FZI, Forschungszentrum Informatik, Germany 

Abstract: Software is more and more becoming the major cost factor for embedded 
devices. Already today, software accounts for more than 50 percent of the 
development costs of such a device. However, software development practices 
in this area lag far behind those typically applied in the infonnation systems 
development domain. Reuse is hardly ever heard of in some areas, development 
from scratch is common practice and component-based software is usually a 
foreign word. PECOS is a collaborative project between industrial and research 
partners that seeks to enable component-based technology for a certain class of 
embedded systems known as "field devices" by taking into account the specific 
properties of this application area. In this paper we introduce a component 
model for field device software. Furthermore we report on the PECOS 
component composition language CoCo and the mapping from CoCo to Java 
and C++. We conclude by giving an overview on the PECOS software 
development process. 

Key words: Embedded devices, field devices, software from components, composition 
language 

1. INTRODUCTION 

The state-of-the-art in software engineering for embedded systems is far 
behind other application areas. Software for embedded systems is typically 
monolithic and platform dependent. Development from scratch is common 
practice. The resulting software is hard to maintain, upgrade and customize. 
Beyond that it is almost impossible to port this software to other hardware 
platforms. Component-based software engineering is expected to bring 
number of advantages to the embedded systems world such as faster 



www.manaraa.com

168 Chapter 10 

development cycles, the ability to secure investments through reuse of 
existing components, and the ability for domain experts to interactively 
compose and adapt sophisticated embedded systems software out of pre
fabricated parts. The key technical questions and challenges are: 
- Component model: What kind of component model is needed to support 

modularization and re-use of software for embedded systems? Which non
functional aspects of this software (such as timing constraints) have to be 
modeled explicitly to enable automated compositional reasoning? 

- Lightweight composition techniques: How can component-based 
applications be mapped on efficient and compact code that fulfils the hard 
requirements imposed by the application domain? 

- Platforms and tools: How can we increase software portability (and thus 
increase re-use and productivity)? What tools are needed to support 
efficient specification, composition, validation, and deployment of 
embedded systems applications built from components? 
The PECOS project aimed to enable component-based software 

development for embedded systems. To achieve concrete results, PECOS was 
focusing on a specific area of embedded devices, so-called field devices. The 
results of the project included a process model for component-based software 
development, a component model that addresses the specific needs of the 
application area as well as the necessary method and tool support. A real case 
study device has been developed to evaluate the concepts and to put the 
approach into practice. 

Section 2 introduces the PECOS case study, summarizes the particular 
requirements of field devices for a component-based software development 
(CBSD) approach, and provides an example application that illustrates the 
PECOS working domain. Section 3 introduces the PECOS (field device) 
component model. In Section 4 we introduce the PECOS composition 
language for component based software. Examples are used to illustrate the 
concepts and the mapping between the language and the model. Section 5 
provides concepts for deploying the specified software to real devices. It 
describes how components are mapped to target code and how certain 
concepts are implemented. Section 6 presents the PECOS software 
development process. 

2. CASE STUDY DESCRIPTION 

ABB's instruments business unit develops a large number of different field 
devices, such as temperature-, pressure-, and flow-sensors, actuators and 
positioners. A field device is an embedded system with hard real-time 
constraints. Field devices use sensors to continuously gather data, such as 
temperature, pressure or rate of flow. They process this data, and react by 



www.manaraa.com

10. Components for Embedded Devices 169 

controlling actuators like valves or motors. To minimize costs, field devices 
are implemented using the cheapest available hardware that is sufficient to 
achieve the task. A typical field device may contain a 16-bit microprocessor 
with only 256KB of ROM and 40KB of RAM. 

Figure I. Pneumatic Positioner TZID 

The software for a typical field device, such as the TZID pneumatic 
positioner shown in Figure I, is monolithic, and is separately developed for 
each kind of field device. This results in a number of problems. 
- Little code reuse: The same functionality (e.g., non-volatile memory

manager, field-bus driver, or control-algorithms) is re-implemented at 
different development sites in different ways for different field devices. 

- Plug-incompatibility: Functions and modules are implemented for a 
specific device without standardized interfaces. 

- Inflexibility: Monolithic software is hard to maintain, extend or 
customize. 

- Cyclic execution model: The software system often comprises several 
cyclically running tasks with different cycle times (e.g., Sms, IOms and 
50ms). This makes it hard to incorporate sporadic and long running 
functions without introducing deadline failures, that is a deadline is not 
met when it should be. Furthermore it is error-prone to change the 
execution model from cyclic execution to process-based scheduling [2]. 
In order to demonstrate the applicability of the CBSD approach for 

embedded systems, the PECOS project is developing the hardware and 
software for a demonstrator field device. The task of this PECOS 
demonstrator field device is to control a three-phase motor that is used to 
close or open a valve (see Figure 2). 

The motor is driven by a frequency converter that can be controlled by the 
field device over a Modbus connection (an industrial communication 
protocol). The motor is connected to the valve either directly via a worm shaft 
or using additional gearing (4). A pulse sensor on the shaft (5) detects the 
speed and the direction of rotation. The PECOS demonstrator field device (1) 
is equipped with a web-based control panel (7) with some basic elements for 
local operation and display. The demonstrator device can be integrated in a 



www.manaraa.com

170 Chapter 10 

control system via the field-bus communication protocol Profibus PA (6). The 
device is compliant with the Profibus specification for Actuators [3], [4]. 

errOl' <D Dcmonsfr.Jtor Board ~ Pulse scnS(lr on the won11 c;haf1 
Q Frcquenc) Convener (Ii) I'rolibus Plu~ 

setOOlnt . - -I 
I L-_----' CD MotOr (l) Elhcmci Plug 

® Gear ® Dchuggll1g Intcrf.i3cc 

L .. _~:t_lJ3I!_~a!~: _____ . _______ 1 _______________ .J 

7 I 

l. ____________ ~ ____ I---- -- ------------------- L-=~-=--..J 
T,cI<s J"L -

Figure 2. PECOS Case Study Device 

We will use the following example throughout this chapter to illustrate the 
PECOS component model and composition language. A part of the PECOS 
case study is concerned with setting a valve at a specific position between 
open and closed. Figure 3 illustrates three connected PECOS components that 
collaborate to set the valve position; the desired position is detennined by 
other components not shown here. In order to set and keep the valve at a 
certain position, a control loop is used to continuously monitor and adjust the 
valve. This positionvalve control system consists of three components: 

The component processAppl i cati on obtains the desired position of the 
valve (Set-Point) and reads the current state of the valve from the FQD 

component. This infonnation is then used to compute a frequency for the 
motor. Once the motor has opened the valve sufficiently, ascertained by 
the next reading from the FQD, the motor must be slowed or stopped. This 
repeated adjustment and monitoring constitutes the control loop. The 
component processAppl i cati on runs cyclically and synchronously with 
a defined cycle time and a worst-case execution time which must not be 
exceeded. 
The FQD (Fast Quadrature Decoder [5]) component is responsible for 
capturing events from the motor. This component abstracts from a micro
controller module that does FQD in hardware. It provides the 
processApp 1 i cati on with both the velocity and the position of the valve. 
The FQD component runs asynchronously whenever the respective motor 
event occurs. 



www.manaraa.com

10. Components for Embedded Devices 171 

The ModBus component acts as an interface to the frequency converter that 
determines the speed of the motor. The frequency to which the motor 
should be set is obtained from the processAppl i cati on component. 
ModBUS outputs this value over a serial line to the frequency converter 
using the ModBus protocol [22]. Since communication over ModBus is 
rather slow and does thus not fit into the cyclic execution scheme. 

Figure 3. FQD Control Loop 

This example illustrates the key issues - besides the tight resource 
situation - concerning the field device domain: 
1. Cyclic synchronous behavior: Most components responsible for a single 

piece of functionality are repeatedly executed synchronously (by a 
scheduler) with a specified cycle time and a worst-case execution time. 
processAppl i cati on is an example of this. The execution must not take 
longer than the specified worst-case execution time. 

2. Threading and asynchronous execution: Some components do not fit 
into the cyclic synchronous scheme are passive, while others (like FQD or 
ModBUS) have their own thread of control in order to react on asynchronous 
events or to perfonn long-running computations in the background. 

3. Data-flow-oriented interaction: Components communicate by means of 
data that flows between the entities of the system. The interface of a 
component consists of a set of data ports. The dataflow is usually 
implemented using shared memory. 

3. A COMPONENT MODEL FOR EMBEDDED 
SOFTWARE 

In order to apply CBSD techniques to embedded systems software, we 
must be precise about what we mean by a component. In particular, we must 
take care to specify how components are structured and composed, which 



www.manaraa.com

172 Chapter 10 

properties of components are important to capture and reason about, and how 
a composition of components can be interpreted at run-time. 

Port 
key 

Figure 4. A Component Model for Embedded Software 

In the following we briefly present a component model that reflects an 
architectural style [6] for embedded systems software. This component model 
explicitly takes non-functional properties of components such as memory 
consumption and timing information into account. We also sketch how 
compositions of components can be interpreted by means of Petri nets. This 
formalization can later be used to automatically derive schedules. 

3.1 Model Elements 

Figure 4 illustrates the key elements of the component model. Components 
have interfaces defined by a number of ports, and may be hierarchically 
composed. So-called leaf components are treated as black boxes, and are 
directly implemented in some host programming language. Composite 
components, on the other hand, are built by connecting the ports of other 
components (leaf or composite), and expressing which ports of the constituent 
components are exported as ports of the composite (Figure 5). 

Ports allow components to communicate with each other. Connecting 
ports means defining a place (a variable) in a shared memory area. Connected 
ports and exported ports therefore represent the same variable. Connectors 
may only connect ports of compatible type, direction and range. 



www.manaraa.com

10. Components for Embedded Devices 173 

leaf components 

composite component connected ports 

Figure 5. A Composite Component 

The model is able to represent three types of components that are relevant 
in the embedded systems domain. 

Passive Components (e.g., ProcessAppiicatioll) encapsulate some 
functionality: when they are executed (scheduled), they may read values from 
their input ports, perform some calculation (depending on these values as well 
as on their internal state) and write values to their output ports. Typically, they 
execute on a regular basis (e.g. every 10 ms). Their execution characteristics 
can thus be characterized by a cycle time and a worst case execution time. 

Active Components (e.g., ModBus in Figure 5) are called active because 
they run in their own thread of control. Active components are used for two 
purposes. First, they model long-running, continuous activities. Second, 
composite active components are responsible for scheduling their constituent 
components in a way that respects the deadlines imposed by the real-time 
constraints. In addition, a complete system composed of components is also 
modeled as an active composite component. 

Event Components (e.g., FQD) are components whose functionality is 
triggered by an event. They are typically used to model hardware elements 
that generate events. Typical examples are timers, used to keep track of 
deadlines, or devices that emit events that encode status information, such as 
the current rotation speed of a motor, the current temperature, and so on. 

Components are characterized by their properties, which encode 
information such as timing (e.g. their cycle time) and memory usage or other 
non-functional information about a component. 

3.2 Execution Model 

In addition to the static structure described above, the PECOS model 
comprises an execution model that describes the behavior of a field device 
software. By using Petri nets [7] to represent the execution model, we set a 
formal basis to reason about real-time constraints and automatically generate 
real-time schedules for software components. 



www.manaraa.com

174 Chapter 10 

The execution model deals with the following two issues: 
Synchronization - how to synchronize data-flow between components (esp. 
between components that live in different threads of control) and Timing -
how to make sure that the functionality of a component is executed according 
to its cycle time and specified deadlines. 

A composition of components has as many threads of control as there are 
active components. Each composite active component is responsible for 
scheduling the passive components under its control and to take care of 
synchronization with the active components it contains. This is carried out by 
the composite active component by calling the executeO and syncO methods 
(see Section 4.2) of its constituent passive and active components, 
respectively. The sequence of calls to these functions is pre-determined by a 
static schedule, which is computed from the real time constraints specified for 
the system. The feasibility of the schedule is checked using techniques like 
RMA ([23]). 

We formalize the execution semantics of the PECOS model by means of a 
Petri net interpretation. Three types of tokens are used in this Petri net model 
to represent data-flow, control flow and synchr:mization, respectively. The 
details of this formalization, however, are beyond the scope of this chapter. 
They are described in [8], [9]. 

4. THE COCO COMPONENT LANGUAGE 

In this section, we introduce the component language CoCo. The CoCo 
language is the syntactical representation of the model described in Section 3. 
The language is intended to be used for 1) the specification of components, 2) 
the specification of entire field device applications and 3) the specification of 
architectures and system families. In addition, CoCo supports reuse of 
components and architectures and facilitates compositional reasoning. 
Moreover, CoCo serves as input for scheduler computation and code 
generation. 

We first give an overview on the CoCo language. We describe how 
developers can specify components in terms of their interfaces and their 
behavior. We subsequently show how CoCo supports the specification of 
system families. Finally, we sketch how CoCo specifications can be used for 
reasoning about functional and non-functional properties of a system. A more 
detailed description of the CoCo language is given in [11]. 

4.1 CoCo Language Overview 

Components represent units of computation and are the major means of 
structuring a CoCo system. CoCo supports all component types of the 



www.manaraa.com

10. Components for Embedded Devices 175 

component model. For example, Figures 6 and 7 show our running example in 
CoCo. In Figure 7, we see an active component (marked with the keyword 
active), an event component (keyword event) and a passive component. In 
analogy to the 00 model, components play the role of classes. Components 
define a scope in the same sense as 00 classes do. Components can be 
instantiated that is, there can be several instances of a component at run-time, 
each of which with an unique identity. The component posi ti onVa 1 ve in 
Figure 7, contains instances of other components (e.g., of component FQD). 
However, instances have to be declared statically that is, there is no 
mechanism for dynamic creation of new instances at run-time (i.e., using 
some sort of new statement known in standard 00 languages). 

Programming in CoCo is data-flow-oriented. Ports (e.g., setpoint) denote 
data flow into or out of a component and they are the only means to 
communicate with a particular component. One can think of the set of ports of 
a component as the interface to a piece of functionality or behavior that is 
executed cyclically or in response to a certain event in order to compute 
output values depending on the current input values and/or the internal state 
of the component. The actual implementation of the behaviour, however, is 
not specified at the level of CoCo specifications but added to the component 
as C++ or Java code (see Section 4.2). The only information available about 
this implementation is the worst-case time it takes to perform the computation 
(property execTime) and the interval between this computation (property 
cyc 1 eTi me). These values are specified in CoCo as component properties. 
Ports are assigned both a data flow direction (i nput, output, or i nout) and a 
data type. Furthermore, ports can be declared mandatory (default) or optional. 
The former means that this port must be connected for a component to be 
used correctly. Failure to connect all mandatory ports of a component will 
result in an error. Optional ports need not necessarily be connected. Often 
they only provide access to additional status information about a component. 

event component FQD { 
II out ports 

} 

output float actual position; 
output float velocity; 
II properties 
property cycleTime = 100; 
property execTime = 10; 

active component ModBus { 
II in ports 

} 

input float setFrequency; 
II properties 
property cycleTime = 100; 
property execTime = 10; 

component ProcessApplication { 
II in ports 
input float setpoint; 
input floatactualposition; 
input float velocity; 
II out ports 
output float setFrequency; 
II properties 
property cycleTime = 100; 
property execTime = 20; 

Figure 6. The FQD Control Loop Components Specified in CoCo 

Components are interconnected through the use of connectors (e.g., 
connector c1 in component Positionvalve). Connectors connect a list of ports 



www.manaraa.com

176 Chapter 10 

defined either in the current component (like port set poi nt in connector cl) 
or by one of the contained instances (that is, instances in the same scope). 
Different connectors that share a common port represent the same connection. 
For composite event and active components, this is only true within the scope 
of their parent component while for passive components this also holds for 
ports of instances within this particular passive component. 

component positionvalve { 
ModBus mb; 
FQD fqd; 
processApplication pa; 
input float setpoint; 
property execorder = "pa, fqd, mb"; II execution order 
connector cl (setPoint, pa.setpoint); 
connector c2 (fqd.actualposition, pa.actualposition); 
connector c3 (fqd.velocity, pa.velocity); 
connector c4 (pa.setFrequency, mb.setFrequency); 

Figure 7. The FQD Control Loop Specified in CoCo 

Properties serve to specify functional and non-functional features of a 
component, such as initialization values for ports, memory consumption and 
worst-case execution time. They can be structured in so-called property 
bundles. These bundles group properties that semantically belong together, 
such as scheduling information (worst-case execution time, cycle time). 
Properties can be used by tools to inspect the component in different phases of 
the development process (e.g., by using execution orders and times when 
calculating a schedule). Properties can be set on a per-component basis and a 
per-instance basis. 

4.2 Adding Behavior to Components 

CoCo does not only support the specification of component interfaces but 
also provides some help for the specification of the actual implementation of 
the behavior of components. There are two ways of adding behavior to a 
component. One is by composing a component out of existing components. 
However, the implementation of the basic behavior of leaf components is not 
specified in CoCo directly but a general purpose programming language is 
used. PECOS supports Java and C++ (including Embedded C++, [16]) for this 
purpose. To fill in implementation code written in one of these languages, 
CoCo provides three pre-defined hooks: 

Initialize: Initialization code for a particular component such as init values 
for ports is added here. This code is executed by the run-time system upon 
start-up. 
Execute: Serves to specify the actual functionality of a component that is, 
the algorithm that computes output values using the internal state of a 
component and/or input values. The time of execution of this functionality 



www.manaraa.com

10. Componentsjor Embedded Devices 177 

depends on the component type. For a passive component this 
functionality is invoked synchronously by a scheduler. For active 
components, this functionality is executed continuously within a separate 
thread. Event components (including timer components) perform their 
functionality when the event occurs that this particular event component 
listens to. 
Sync: Active and event components have this additional part. The code in 
sync is executed synchronously - like execute of passive components -- by 
the scheduler and serves to exchange data between the asynchronous 
thread or event handler of active components respectively event 
components and the synchronous outside world. 
The code that can be filled in at these three hooks has to be valid target 

language code (C++ or Java). A developer can only use primitives defined by 
the PECOS run-time environment [21]. This means in particular that a 
developer cannot start new threads or do anything else which might affect 
schedules. To deploy a component to a particular target platform (i.e., to 
generate code for this platform) all hooks of each participating component 
must be filled in with appropriate target language code. The code generator 
adds these code fragments to the generated code. Code generation is discussed 
in more detail in Section 5. 

4.3 Specifying Software Families with CoCo 

Components define the concrete parts that make up the overall system. To 
specify architectural styles or families of components or families of entire 
applications (devices), however, some additional support is needed. CoCo 
provides the concept of abstract components for this purpose. Abstract 
components represent templates of entire systems, or frameworks, that may be 
filled in later on with concrete components. Abstract components do not have 
a representation in the model as they do not contribute to the run-time 
behavior of field device software. They are merely a technique to simplify 
specification and to enable reuse of designs. 

abstract component pecosControlLoop { 
role AbstractProcessApplication PecosPA; 
role AbstractControlDevice PecosCtrl; 
role AbstractFeedBackDevice pecosFdbck; 
input float setpoint; 

} 

connector setpointCsetPoint, pecosPA.setpoint); 
connector feedbackl(pecosPA.actualposition, 

pecosFdbck.actualposition); 
connector feedback2CPecosPA.velocity, pecosFdbck.velocity); 
connector controlCPecosPA.setFrequency, pecosctrl.setFrequency); 

Figure 8. Definition of an Architectural Style 



www.manaraa.com

178 Chapter 10 

Besides the elements known from normal components, abstract 
components can define so-called roles. Roles are typed variation points or 
holes in a (micro-)architecture. Figure 8 shows the specification of an 
architectural style for control loops. 

We assume that a PecosControlLoop should always have an instance of 
sub-type of AbstractProcessAppl i cati on that plays the role PecosPA in our 
valve controller architecture. AbstractprocessAppl i cati on again is an abstract 
component that defines a certain interface (i.e., ports, properties) every 
process application component has to conform to. Thus, roles serve as 
placeholders for instances. These placeholders can also be connected by 
connectors as if they were normal instances. This way a developer is able to 
specify an entire family of applications that share a common architecture in 
terms of the components involved and their data-flow dependencies. To create 
a specific member of this family, a component has to implement the 
respective abstract component. Implementing an abstract component means 
that all roles defined by this abstract component have to be bound to suitable 
instances and that all connectors, instances, ports, and properties defined in 
this abstract component become now part of the implementing component. In 
our example the role PeCOSPA is bound to an instance of component 
processApplication. The component processApplication on the other hand is 
required to implement the abstract component AbstractprocessAppl i cati on. 

4.4 Composition Checking 

In order to be valid, a composition must follow certain rules. Besides 
simple syntactic rules, that are checked by a composition language parser, 
some semantic rules must also be followed. These rules express requirements, 
that emerge from the component model such as "if a component implements 
an abstract component, it must bind all roles" or "all mandatory ports must be 
bound". First order predicate logic is used to check these rules. The PECOS 
composition tool is able to generate a set of Prolog facts out of a composition. 
These facts describe the whole system, together with all included components 
and their connections. Semantic rules are formulated as Hom clauses, which 
are checked against the generated facts [17]. 

Besides semantic rules imposed by the PECOS component model, 
application domain specific rules may be imposed on a specification. For 
example, embedded systems in a particular domain, e.g. field devices, have a 
specific set of requirements that could be checked using composition rules. 

Finally, it may be important to impose application specific or project 
specific rules. Such rules could express certain requirements for debugging or 
release versions of the software, dependencies between components, platform 
specific property settings, etc. When checking these rules, they are formulated 
as Prolog queries which in tum are validated against the generated facts. 



www.manaraa.com

10. Components for Embedded Devices 179 

5. CODE GENERATION: FROM COCO TO C++ AND 
JAVA 

CoCo can be used to specify a system using the PECOS model. 
Additionally, we have a language mapping from CoCo to target languages 
such as C++ and Java in order to be able to built a functioning system out of a 
CoCo specification. This section briefly introduces the basics of this mapping. 

5.1 Mapping Components 

Components in the PECOS model are directly mapped to classes in the 
target language. Components are functional units that perfonn some actions 
by means of an execute part. Passive components within the same scope 
perfonn their execution synchronously, one at a time. Active components, 
however, run in parallel with the rest of the system. This is realized by 
mapping the PECOS model to a prioritized, pre-emptive multi-threaded 
system (the PECOS Execution Environment). For assigning components to a 
particular thread we apply the following two rules: 
1. Every active and event component runs in its own thr~ad. 
2. Every passive component that is part of a composite runs in the same 

thread as its direct parent. 
Instances of components are mapped to objects in the target language. 

More specifically, since instances of components can only occur inside of 
composite components, these instances are mapped to member variables. 
Instances are given the same name as the name in the specification and can be 
accessed through the class representing the composite component. 

package org.pecos.generated; 
import pecos.rte.component.pecospassivecomponent; 
import org.pecos.generated.DataStore; 

public class positionvalve extends PecospassiveComponent { 
public positionvalve() { 

super( "positionvalve" ); 
} 
public Mod Bus mb = new ModBUS(); 
public FQD fqd = new FQD(); 
public processApplication pa = new processApplication(); 
public float get_setpoint() { 

} 
return (Datastore.val_float[DataStore.positionvalve$setpointJ); 

public void initialize() { 
mb.initialize(); 
fqd.initialize(); 
pa.initialize(); 

} 
public void execute() { 
} 

}; /* positionvalve */ 
Figure 9. Generated code for the PositionValve Component 



www.manaraa.com

180 Chapter 10 

The PECOS model defines ports as the only feasible way for exchange of 
data between components. The model determines three different types of 
ports: input-ports, output-ports and i nout-ports. In the target language, ports 
are represented as getter and setter methods depending on the type of port. 
Input-ports are mapped to a get-method, output-ports to set-methods and 
inout-ports are mapped to both get- and set-methods. When we map ports to 
get- and set- methods, we are able to hide the implementation of connectors 
between the ports in the methods and, at the same time, give the user an easy 
means of accessing the ports. As an example, Figure 9 shows the generated 
code for the Pos i ti onVa 1 ve component. 

5.2 Mapping Connectors 

CoCo is designed to specify a system that is consIstmg of pair-wise 
interacting components, instead of merely being able to define stand-alone 
entities. Therefore a data exchange mechanism has been introduced that 
connects ports through connectors. A connector ensures that data at an output 
port is "moved" to the connected input port. 

Data exchange (DS) between components can be achieved in various 
ways. Two common approaches are: shared memory and copying values. In 
the language mapping that we describe here we have chosen a hybrid 
approach that incorporates both strategies. Within a collection of components 
running in a single thread data is exchanged through shared memory. This is 
achieved by assigning a shared memory page to every thread for data 
communication. 

The data store that implements the shared memory is an automatically 
generated artifact. Inside a single thread, mapping connectors under the 
PECOS model to the Data Store is straightforward. The value of a connector 
is stored at a predetermined location in the Data Store. The generated get- and 
set-methods to exchange data on a port use indices that read from, 
respectively write to, that location in the Data Store. To achieve this, the 
generated classes use constant indices that are used to access the right value. 
When two ports are connected they use exactly the same index (the constant 
variable has the same value). This results in two ports that use the same 
location in the DS. 

Active components together with their passive subcomponents are running 
in their own threads. Each thread has its own Data Store for the connectors 
local to this particular thread. Connectors between ports that belong to 
components in different threads work differently. They exchange data by 
copying values from the Data Store in one thread to the Data Store in the 
other thread. A scheduled synchronization method sync (see Section 4.2) is 
used to exchange data between the different threads. 



www.manaraa.com

10. Components for Embedded Devices 181 

Since the behavior of the synchronize method cannot be known 
beforehand and it is not specified in the model either, users currently have to 
provide their own methods. A typical example of a synchronize method 
would copy data in or out of the thread's data store depending on the state of 
the component. Therefore, two utility methods are generated to aid III 

performing these tasks: 
- i mporL<portname>: Imports the value from the "outside" world into the 

"local" DS (input- and in out-ports only). 
- exporL<portname>: Exports the value from the "local" DS to the "outside" 

world (output- and inout-ports only). 

5.3 Executing The System 

An execution environment is necessary in order to be able to run the 
generated code. In PECOS, we have therefore defined the PECOS Execution 
Environment that abstracts from its underlying (Real-Time) OS and provides 
some language independent interfaces for synchronization. An execution 
environment for C++ and Java is defined that provides a common application 
programming interface (API) for both target languages. 

The execution environment contains a highest-priority first, pre-emptive 
scheduler. Every active component (and its passive sub-components) in a 
CoCo specification is mapped to a separate thread in the target execution 
environment. The assignment of priorities, periods and deadlines for the tasks 
can be specified as timing properties for every active component. The actual 
schedule is computed from the values of these properties. 

6. THE PECOS CBSE PROCESS 

The PECOS project not only aimed at setting up the technical basis to 
enable component-based software development in the area of field device 
software but also delivered a software process model for component-based 
software development. 

The PECOS process models the tasks and actions and their interrelation, 
that are typically performed over the course of a PECOS development. Since 
the PECOS process concentrates on a particular application domain, it has 
been adjusted to address the particular challenges of field device software as 
well as to incorporate the specific tools and methods to tackle them. This 
process covers all relevant development phases from requirements gathering 
to scheduler calculation, system simulation deployment and release. 

The following sections give only an outline of the PECOS process. First, 
an overview on application development is given. Then, the tasks of 
component composition and component development are presented. A more 



www.manaraa.com

182 Chapter 10 

detailed description of the process can be found in [1]. The PECOS process is 
an iterative process. However, in the following section we often do not show 
iterations explicitly. 

6.1 Application Development 

Application development, as shown in Figure 10, is the process of 
producing a software system conforming to the software requirements of a 
PECOS field device. Besides the software part, a field device consists of two 
more parts: the mechanical and the hardware parts. As requirements 
specification only makes sense with respect to a common treatment of these 
three aspects, we do not investigate this any further. But we assume that the 
software, hardware and mechanical requirement specifications will be 
available. 

Application Development 

Deployment II 
L ____ -'====~ _____ ~~~~'=L_lc'~~~"!l___1~RT Env.~" 

Figure 10. Application Development Tasks and Tools 

Field devices are most probably part of a system family with similar 
requirements and architectures. This commands the adaptation and reuse of 
standard architectures rather than building everything from scratch. Therefore, 
the first step in every PECOS application development is to define an overall 
system architecture and implement it with the CoCo language, as outlined in 
Section 4.3 or to reuse and adapt an existing architecture. The use of standard 
architectures speeds up the whole development process, while using an 
approved and well-understood design at the same time. 

The high-level application architecture of a system is the starting point for 
the actual composition of the application from components. This task, is also 
referred to as application composition (see Figure 11). It is organized as an 
iterative, incremental approach to refine the initial system decomposition until 
a fully specified device is built. The refinement process of every iteration 
applies the waterfall model and comes in guise of the four main tasks of 
identifying, quelyingfor, selecting/building and composing components. 

This process produces a series of partial, and finally a complete 
specification of the application. These are subject to the schedule generation 
task. During this activity, an application global schedule is produced, using 
the timing information associated with every component. It is supported by 
scheduling generation and analysis tools. 



www.manaraa.com

10. Components for Embedded Devices 183 

Finally, the application must be tested. Therefore, it is generally necessary 
to deploy the application onto the physical device, since many components 
are hardware dependent. This is especially necessary in order to test the 
generated schedule under real-world conditions. 

6.2 Application Composition 

The subsystem decomposition that results from the initial architecture is 
usually quite coarse-grained and can not be realized directly. More fine
grained components have to be identified that together realize these complex 
subsystems. Thus, incremental functional decomposition of the application 
has to be achieved. 

;Application Composition 
Component Query for 
Identification Components -. 

Repository 

Selection 
Adaptation 

Development 

Component I 

Composition . 

CoCo 

Figure II. Application Composition Tasks and Tools 

The query for component task is employed in order to find out about 
readily available components that can be used to realize a given system 
decomposition. This activity is supported by a component repositOl),. which is 
used to store and recover components. It becomes clear, that identifying 
components (which is a top-down approach) and querying for components 
(which is a bottom-up approach) are actually highly coupled, as they 
influence each other mutually. Depending on the query results, different 
procedures are possible. In some cases it may be possible to directly reuse a 
component, in other cases an adaptation may be necessary. Yet, if no suitable 
components are available at all, new ones have to be developed. In this case, 
the sub-task of component development is triggered, which will be described 
in Section 6.4. Component composition is discussed in the following section. 

6.3 Component Composition 

The previous tasks are assumed to lead to a set of components, which are 
suitable to realize (parts of) the application. The next step to be taken is to 
compose them on the functional as well as on the non-functional level. This 
means that the data- and control-flow dependencies between them must be 
detem1ined. The data dependencies are fixed by simply wiring the respective 
ports by connectors (see Section 4.1). The control-flow is detennined by an 



www.manaraa.com

184 Chapter 10 

application-global schedule, which confonns to the timing requirements of the 
device. 

Composition rules and contracts are used to specify constraints over a 
composition and therefore enable a correct-by construction approach. Rules 
designate constraints over a component or composition in tenns of predicates 
over component properties as presented in Section 4.4. They only refer to 
statically available infonnation and thus do not depend on infonnation which 
is only available at run-time. 

6.4 Component Development 

Component development is a sub-task of application development and is 
triggered whenever components are required that can not be provided from 
the component repository directly or through adaptation of similar 
components. 

Developing a PECOS component means to perfonn the following main 
tasks: requirements elicitation, intelface specification, implementation, testing 
& profiling, documentation and finally release (see Figure 12). All of these 
activities are well-known in component based development, but they are 
special here, as they are tailored to the PECOS component model. 

Requirements elicitation aims to define the functional as well as the non
functional properties of a component. The functional part concerns the 
interface comprising in- and out- ports as well as the functional mapping of 
in-port values to out-port values. The non-functional part primarily concerns 
properties covering timing infonnation for the schedule generation, but also 
the type of the component (active, passive, event) and the target language. 

iComponent Development 
Requirements Interface 

Elicitation Specification 

CoCo 

Testing & 
Profiling 

! Testing-Tool i 
I Profiling Tool' 
~---- ..... _ ... ---' 

Figure 12. Component Development and Tools 

Documentation 
Release 

Specifying the interface means wntmg down the component's 
characteristics in CoCo. It consists of its ports and properties identified during 
requirements elicitation. Implementing the actual behavior of the component 
requires to fill in its target language code into the predetennined hooks, as 
presented in Section 4.2. Testing is an important concern to ensure the 
software quality which is necessary in order to enable real reuse of 
components. Profiling is the task of detennining a component's execution 
characteristics, like e.g. its worst case execution time, which is needed for 



www.manaraa.com

10. Components for Embedded Devices 185 

schedule generation. Documentation must be provided, if the component is to 
be released to the repository. 

6.5 Tool Support 

The PECOS process is supported by a number of different tools that help 
the developer to perfonn different actions. Among these tools are the CoCo 
language (as introduced in Section 4), a composition checker based on a 
Prolog system, standard repositories, such as integrated CVS version 
management support [18], editors, code browsers, code generators for the 
supported target languages, tools for schedule computation, the execution 
system etc. 

• .. Co:oTe:t 
• ;.,. r:,,:,,;Q~ cas":-: 

.; =0)"" 
~M.;.eo_C'Jl 

.: :.,.. .. j~IOf1\ra: 

.. ~·lIIf.vft': P':::'lil : 10LVolve- ( 
:odfuc. tt','b; 
F.ltl r-:J Q ; 

l'r<.ocl'!;;=!~.J"I;.tl ~CoCl: 101. pe; 
I floa t. s9':.PQlnt: 

x ~~ C""I.r-~ 
.J ' ,' -0", 

• !.e~::\') rt 
h- it:'~~~CH 

• rr!l 
• Iq.:l · "' .... t.·'"II'~oC:rs. 

.. C"":';P~1.c.Q~ ) 

~: : ~;~:~~::: I ~~J-.'-~l~_l;------"------' 
~~::;(':-l ~r ~ ~ ~~~~~:~~~:~:~ . ·~· U'1 . · .:' 

• :3 

l .' 

.:.L.--..! .!.I 
f' .J\1ca'(· ~,t: .. 

Figure 13. The PECOS Component Environment 

· . ..: 
I E"~' 

C· 'le'7 «"PH 
Ct lC!''' l:'1Jl-r 

Most of these tools are inteb'Tated in the PECOS Component Environment. 
This environment is an integrated development environment based on the 
ECLIPSE platfonn [19]. ECLIPSE is an open platfonn that provides the users 
of the PECOS technology with a professional basis for development tools. 
Due to the openness of the underlying ECLIPSE platfonn, the PECOS 
component environment can be extended with other tools such as graphical 
composition tools, simulators, remote debuggers, deployment tools, etc. 



www.manaraa.com

186 Chapter 10 

7. RELATED WORK 

Several approaches for composing software applications out of readily 
available components have been proposed in the literature. The most 
significant contribution comes from the software architectures domain [6], 
[13]. Architecture systems introduce the notion of components, ports, and 
connectors as first class representations. However, most of the approaches 
proposed in the literature do not take the specific propeliies of embedded 
software systems into account. 

In [20] the OCTOPUS approach for developing object-oriented software 
for embedded real-time systems is proposed. OCTOPUS is based on OMT 
and FUSION and is used in the telecommunication area. OCTOPUS defines a 
systematic development process for embedded software. OCTPOS does, 
however, only provide limited architectural support. The support for non
functional aspects (e.g., memory consumption) of embedded software is also 
not apparent. 

In [14] van Ommering et al. introduce a component model called Koala 
that is used for embedded software in consumer electronic devices. Koala 
components may have several provides and requires interfaces. Each interface 
defines ports which represent methods in the same way as under the object
oriented programming paradigm. In order to generate efficient code from 
Koala specifications, partial evaluation techniques are employed. However, 
Koala does not take into account non-functional requirements such as timing 
and memory consumption. Koala lacks a formal execution model and 
automated scheduler generation is not supported. 

In [15] a framework for dynamically re-configurable real-time software is 
presented. It is based on the concept of so called Port Based Objects. The 
framework provides only a limited form of specifying a component (e.g., only 
rudimentary scheduling infonnation is given, predefined port types). 
Furthermore the architecture is limited i.e., there is no support for composite 
components. The verification of a composition regarding non-functional 
properties such as memory consumption and schedulability is lacking, too. 

8. CONCLUSION 

Nowadays, software is becoming the major cost factor for embedded field 
devices. Current software development practice in this area is, however, still 
far away from what is standard in the information systems domain. 
Development from scratch is common practice and reuse and component
based software are foreign words. 

In this chapter we presented the PECOS approach to the systematic 
construction of software for embedded field devices. The approach is based 



www.manaraa.com

10. Components for Embedded Devices 187 

on the component-based software development paradigm and has been 
adapted to the special requirements of the embedded world, as there are 
restricted resources (e.g., memory, low CPU performance), cyclic behavior, 
data-flow oriented interaction between parts of the system and threading. 

As described in the paper, the PECOS approach consists of several 
ingredients. First of all there is a component model that represents 
components and the composition of these components together with an 
execution model that allows the reasoning about the behavior of the system. 
The language Coco is used to specify the components and compositions in a 
textual way. Coco can also be used to specify software families. We have 
shown, that Coco specifications can be translated into the general purpose 
programming languages C++ and Java. Finally we presented a process that 
describes how to derive an application out of requirements using the PECOS 
approach. The PECOS approach can help to reduce development costs for 
embedded systems and there are already several promising projects running at 
the PECOS industry partner site which use this approach. 

ACKNOWLEDGEMENTS 

The PECOS project has been funded by the European Commission under 
1ST Program 1ST-1999-20398 and by the Swiss government as BBW 
00.0170. 

The work presented in this chapter is result of a joint effort of different 
people who worked together in PECOS. We would therefore like to thank all 
of these people for their major contributions and fruitful discussions. We 
particularly like to thank the following: Reinier van den Born and Bastiaan 
Sch6nhage (On, The Netherlands) for their work on the component model, 
the runtime system and the language mapping; Oscar Nierstrasz, Stephane 
Ducasse, Roel Wuyts (University of Berne) for their work on the component 
model and scheduling; Peter Muller and Christian Zeidler (ABB Research) 
and Andreas Stelter (ABB Automation) for their contribution to the PECOS 
CBSE process, the component model and for being the sanity checkers 
throughout the whole project. 

REFERENCES 

[I] Michael Winter, Christian Zeidler, and Christian Stich, The PECOS process, ICSR7 2002 
Workshop on component-based software development process, Austin, Texas. 

[2] Alan Bums and Andy Wellings, Real-Time Systems and Programming Languages, Addison 
Wesley, 1989. 

[3] PROFIBUS International, PA General Requirements, Version 3.0, www.profibus.org. 
[4] PROFIBUS International, Device Datasheetfor Actuators, Version 3.0, www.profibus.org. 



www.manaraa.com

188 Chapter 10 

[5] Fast Quadrature Decode TPU Function (FQD) , Semiconductor Motorola Programming 
Note, TPUPN021D. 

[6] M. Shaw and D. Garlan. Sofiware Architecture -- Perspectives on an Emerging Discipline, 
Prentice Hall, 1996. 

[7] Jiacun Wang, Timed Petri Nets, Kluwer Academic Publishers, 1998. 
[8] O. Nierstrasz, S. Ducasse, R. Wuyts, Gabriela Arevalo, A. Black, P. Muller, C. Zeidler, T. 

Genssler, and R. van den Born, A component model forjield devices, 2nd Conference on 
Component Deployment, 2002. 

[9] Stephane Ducasse and Roel Wuyts (editors), Field-device component model. Technical 
Report Deliverable D2.2.8, PECOS, 2001, www.pecos-projcct.org. 

[10] P.O. Muller, C. Stich, and C. Zeidler, Components @ Work: Component Technologyfor 
Embedded Systems, Euromicro Workshop on Component-based Software Engineering, 
Warsaw, Poland, 2001. 

[II] T. Genssler, A. Christoph, R. van den Born, The CoCo Language Description, Technical 
Report Deliverable D2.2.5, PECOS, 2002, ~j-\'_'U2t:cos~PLll.im.()Ig. 

[13] Clements, Paul c., A Survey of Architecture Descriptioll Languages, lnt. Workshop on 
Software Specification and Design, 1996. 

[14] Rob van Ommering, Frank van der Linden, JefTKramer, and Jeff Magee, The Koala 
Component Modelfor Consumer Electronics Software, IEEE Computer, 2000. 

[15] David B. Stewart, Richard A. Volpe, and Pradeep K. Khosla, Design of Dynamically 
Reconjigurable Real-Time Software Using Port-Based Objects, IEEE Transaction on 
Software Engineering, 1997. 

[16] Embedded C++ Homepage, http://www.caravan.net/ec2plus/. 2002. 
[17] T. Genssler, C. Zeidler, Rule-driven component composition for embedded systems, 

Proceedings of the 4th ICSE Workshop on Component-Based Software Engineering, 2000. 
[18] CVS Homepage, http://www.cvshome.orgi, 2002. 
[19] Eclipse Tool Platform, http://www.e.£,lipse.orgi, 2002. 
[20] M. Awad, J. Kuusela, J. Ziegler, Object-Oriented Technologyfor Real-Time Systems, 

Prentice Hall, 1996. 
[21] Bastiaan Schiinhaage, Model mapping to C++ or Java-based ultra-light environment, 

Deliverable D2.2.9, www.pe~roiect.org 
[22] The ModBus web site, IVW\\, .modbus.org, 2002 
[23] L. Briand, L. Roy, Meeting Deadlines in Hard Real-Time Systems - The Rate Monotonic 

Approach, IEEE Computer Society, 1999 



www.manaraa.com

Chapter 11 

Model-Based Risk Assessment in a Component-Based 
Software Engineering Process 
The CORAS Approach to IdentifY Security Risks 

Ketil St0Ien', Folker den Braber', Theo Dimitrakos2, Rune Fredriksen\ Bj0m 
Axel Gran3, Siv-Hilde Houmb4, Yannis C. Stamatiou5 and Jan 0yvind 
Aagedal' 
I Sin tef Telecom & Informatics, Norway; 2CLRC Ruthelford Appleton Laboratol)), UK; 3 Institute 
for Energy Technology, Norway; 4 Telenor R&D, Norway; 5Computer Technology Institute, 
Greece 

Abstract: The EU-funded CORAS project (lST-2000-25031) is developing a framework 
for model-based risk assessment of security-critical systems. This framework is 
characterised by: (I) A careful integration of techniques and features from 
partly complementary risk assessment methods. (2) Patterns and methodology 
for UML oriented modelling targeting the different risk assessment methods. (3) 
A risk management process based on ASINZS 4360. (4) A risk documentation 
framework based on RM-ODP. (5) An integrated risk management and system 
development process based on UP. (6) A platform for tool-inclusion based on 
XML. This chapter describes and explains the CORAS approach to model
based risk assessment. The ability to aid risk assessment in a component-based 
software engineering process receives particular attention. We consider 
maintenance, composition as well as reuse of risk assessment results. 

Key words: Risk assessment, component-based software, modelling, IT security, 
maintenance 

1. INTRODUCTION 

CORAS [10] aims for improved methodology and computerised support 
for precise, unambiguous, and efficient risk assessment of security-critical 
systems. The CORAS project focuses on the tight integration of viewpoint
oriented semiformal modelling in the risk assessment process, in the 



www.manaraa.com

190 Chapter 11 

following referred to as model-based risk assessment. Model-based risk 
assessment differs from traditional risk assessment in the sense that it: 
- combines complementary risk assessment methods for assessing different 

models of the target of evaluation; 
- gives detailed recommendations for the use of modelling methodology in 

conjunction with risk assessment; 
provides modelling methodology to support the documentation of risk 
assessment results. 
An important aspect of the CORAS project is the practical use of the 

Unified Modelling Language (UML) [32] and the Unified Process (UP) [21] 
in the context of security and risk assessment. 

CORAS addresses security-critical systems in general, but places 
particular emphasis on IT security. IT security includes all aspects related to 
defining, achieving, and maintaining confidentiality, integrity, availability, 
non-repudiation, accountability, authenticity, and reliability of IT systems 
[17]. An IT system for CORAS is not just technology, but also the humans 
interacting with the technology and all relevant aspects of the surrounding 
organisation and society. 

The CORAS consortium consists of three commercial companies: 
Intracom (Greece), Solinet (Germany) and Telenor (Norway); seven research 
institutes: CTI (Greece), FORTH (Greece), IFE (Norway), NCT (Norway), 
NR (Norway), RAL (UK) and Sintef (Norway); as well as one university 
college: QMUL (UK). Telenor and Sintef are responsible for the 
administrative and scientific coordination, respectively. 

The remainder of the chapter is divided into six sections: Section 2 
presents the CORAS framework. Section 3 motivates a contract-oriented 
approach to documenting risk assessment results. Sections 4, 5 and 6 consider 
maintenance, composition and reuse of risk assessment results, respectively. 
Section 7 provides a brief summary and the main conclusions. 

2. THE CORAS FRAMEWORK 

As illustrated in Figure 1, the main focus of the CORAS framework is 
model-based risk assessment; moreover, the framework is founded on four 
pillars: (1) A risk documentation framework based on RM-ODP [16]. (2) A 
risk management process based on ASINZS 4360 [1]. (3) An integrated risk 
management and development process based on UP [21]. (4) A platform for 
tool-inclusion based on XML [5]. 

In the following subsections we describe the rationale behind the CORAS 
framework, its main focus as well as the four pillars. 



www.manaraa.com

11. Model-Based Risk Assessment 191 

~II_~ _____ ~_M~o-d-el--b-a-s~ed--~----~--~ risk assessment 
methodology 

/ 

I ntegrated risk 
Risk Risk management and Platfonn for 

documentation management system tool inclusion based 

framework process development on data-integration 

process 

RM-ODP AS/NZS 4360 UP XML 

Figure 1. The CORAS framework 

2.1 The rationale 

As illustrated in Figure 2, model-based risk assessment employs modelling 
methodology for three main purposes: (1) To describe the target of evaluation 
at the right level of abstraction. (2) As a medium for communication and 
interaction between different groups of stakeholders involved in a risk 
assessment. (3) To document risk assessment results and the assumptions on 
which these results depend. 

Risk 
assessment 

~~-y~)~~ 

Graphical 00-
modeling based 

onUML 
/"~ ( Precise illPut ) 

f~~y "." Cat the rig'.'t"~ r;:/"-Y~J~'h Graphical \ ) \ 
. oO-mOdel.~) level of \ Documelllation I 

( as media abstracti~1I r (of assessment "i 
>~ for ~ ~~ /'--' I results alld \ ) 
\ communication) (=) \ assumptiolls Y 
~ ) ""\. \ .~ .. I 
\~\J ~Cl ?; O~~ / 

r-~'~~'~~~~~~~~~~~~~~bj~ 

n Model-based I 

~ ____ . risk assessment J 
Figure 2. Model-based risk assessment 



www.manaraa.com

192 Chapter 11 

The choice of model-based risk assessment is motivated by several 
hypotheses: 
- Risk assessment benefits from correct descriptions of the target of 

evaluation, its context and security issues. The modelling methodology 
furthers the precision of such descriptions, and this is likely to improve the 
quality of risk assessment results. 
The graphical style of UML facilitates communication and interaction 
between stakeholders involved in a risk assessment. This may improve the 
quality of risk assessment results, and reduce the danger of throwing away 
time and resources on misconceptions. 
The modelling methodology facilitates a more precise documentation of 
risk assessment results and the assumptions on which their validity 
depends. This is likely to reduce maintenance costs by increasing the 
possibilities for reusing and updating assessment results when the target of 
evaluation is maintained. 
The modelling methodology provides a solid basis for the integration of 
assessment methods. This may improve the effectiveness of the 
assessment process. 

- The modelling methodology is supported by a rich set of tools from which 
the risk assessment benefits. This may improve the quality of assessment 
results and reduce costs. It may also further productivity and maintenance. 
The modelling methodology provides a basis for tighter integration of risk 
management in the system development process. This may considerably 
reduce development costs and ensure that the specified security level is 
achieved. 

2.2 The risk documentation framework 

The CORAS risk documentation framework is a specialisation of the 
Reference Model for Open Distributed Processing (RM-ODP) [16]. RM-ODP 
is an international standard reference model for distributed systems 
architecture, based on object-oriented techniques. RM-ODP divides the 
system documentation into five viewpoints. It also provides modelling, 
specification and structuring tenninology, a confonnance module addressing 
implementation and consistency requirements, as well as a distribution 
module defining transparencies and functions required to realise these 
transparencies. 

The CORAS risk documentation framework is a specialisation of RM
ODP and can be understood as a reference framework for model-based risk 
assessment. RM-ODP contains many features that are not directly relevant for 
risk assessment. All RM-ODP features are, however, relevant for distributed 
systems. Since most IT systems of today are distributed or at least 
components of distributed systems, the CORAS risk documentation 



www.manaraa.com

11. Model-Based Risk Assessment 193 

framework contains RM-ODP in full. On the other hand, the CORAS risk 
documentation framework refines only those parts of RM-ODP that are 
directly relevant for risk assessment of security critical systems. The CORAS 
risk documentation framework refines RM-ODP in the following manner. 

The RM-ODP terminology is extended with two new classes of 
terminology, namely, concepts for risk assessment and security. Figure 3 
illustrates the relationship between some of the most important notions in 
the risk assessment terminology. 
The RM-ODP viewpoint structure is divided into concerns targeting 
security in general and model-based risk assessment in particular. As 
illustrated in Figure 4, concerns may be understood as specialised cross
viewpoint perspectives linking together related information within the five 
viewpoints. The concerns are further decomposed into models. A model 
provides the content of a concern with respect to a particular viewpoint. 
For each model there are guidelines for its development, including 
concrete recommendations with respect to which modelling languages to 
use. 
The RM-ODP conformance module is extended with additional support 
for conformance checking targeting concerns. 

Threat 
may reduce 

Value 
, 
i may exploit 

l'ulnerability ~-
I reduces ~ 

I I 

Asset l 
1 • 

I con tams Security I ~ 
Policy I 

I 
I opens for 

1 

t Risk 

i~contains 
I I -

I i Likelihood 

contains I~~( has 

Unwanted 
Incident I of 

L-=:":=-O=""-,-,-"----" 

I in accordance with 

!Security should satisfy 

I Requirement 

contains 

I in 

r Target of] 
1 Evaluation! 

Consequence influences ! 

. i 
101 has 

j-----, 
I Context I 
~~--~ 

Figure 3. The CORAS terminology 



www.manaraa.com

194 Chapter 11 

Concerns 

~ e; -;0< ;.. 

'" ~ c ... 
e 

f0- e 
'" '" 0 oil ;:: 

~ '" ... '" [fJ 0 ~ 

Enterprise 

Information 

Computational ~ Computational Viewpoint 

Engineering 

Technology 

Organisational Context Concern 

Organisational Context 
Computational Model 

Figure 4. Relationship between viewpoints, concerns and models 

The CORAS risk documentation framework also provides libraries of 
reusable elements. These may be understood as specification fragments or 
patterns and templates for formalising risk assessment results capturing 
generic aspects suitable for reuse. 

Finally, there are also plans to extend RM-ODP with a specialised risk 
assessment module containing a risk assessment process, risk assessment 
methodologies, international standards on which CORAS builds as well as 
integration formats for computerised tools. 

2.3 The risk management process 

The CORAS risk management process is based on AS/NZS 4360: 1999 
Risk Management [1] and ISO/IEC 17799:2000 Code of Practice for 
Information Security Management [19]. Moreover, it is complemented by 
ISO/IEC 13335:2001 Guidelines for the management ofIT-Security [17] and 
IEC 61508: Functional Safety of Electrical/Electronic/Programmable 
Electronic Safety Related Systems [15]. As illustrated in Figure 5, AS/NZS 
4360 provides a sequencing of the core part of the risk management process 
into sub-processes for context identification, risks identification, risks 
analysis, risks evaluation, and risks treatment. 



www.manaraa.com

11. Model-Based Risk Assessment 

Identify Context I 

:::: ~~~~~~;g;;:;::E) JI 
odcYclopcrilcnK 
·<.\ec,dcth.."lruClurC 

Jdentify Risk 
Wh.!lt can happcn"II<lw can;lhapp"'u" 

~ __ A~n'...;lv"t' Risks I 
I 

Dl'tenmlll' II DC'\tnnme I 
hkdiho()d CO[}Sl'qUL1KC'S i 
~/ i 

I born",· bel or ri,k I I 

'-------,----------" I+----i 
i 

I 
Evaluate Risks 

compare ag.ainst ('nll'ria, Sl'\ risk priorities 

-----~ ~-~ .. 
Treat Ri!i~ 

AlJneD (Rl'4uir(,Illl'lltS) 
·jdentlfy In:alllM:nl op1;ons 

• ... · ... alualctrcatmcntoplton. 
o",icctlrc!llmCnl<>pll<lnS 

'ptcparcLrcatmcnlplans 
',mpicmcnlplans [

unwanted
l 
.. 

inridcnh 

Co""'qucnn I II nwamcdlr1<:ldcnli 

T -, has T 
n~la)"" ~ \\dc"mpulcr ; 

195 

-,-, 
~ 

~~'~-=L 
1'''''1'1., ~~::-,o11warel 

Figure 5. The role of UML in the CORAS risk management process 

For each of these sub-processes, the CORAS methodology gives detailed 
advice with respect to which models should be constructed, and how they 
should be expressed. Figure 6 assigns concerns to the five sub-processes. Note 
that, even if the sub-processes are sequenced, ASINZS 4360 is iterative and 
allows feedback. 

Models expressed in the Unified Modelling Language (UML) [32] are 
used to support and guide the risk management process. The four diagrams to 
the right in Figure 5 illustrate: 

specification of the target of evaluation with the help of a UML class 
diagram (aspect of the target of evaluation concern listed in Figure 6); 
specification of a threat scenario with the help of a misuse case diagram 
[31 ] (example element of the threat scenarios concern listed in Figure 6); 
specification of the assets to be protected with the help of a UML class 
diagram (aspect of the assets concern listed in Figure 6); 
specification of an unwanted incident with the help of a UML class 
diagram (example element of the unwanted incidents concern in Figure 6). 



www.manaraa.com

196 Chapter 11 

I Identify context I 

~ 
°SWOT 
oOrganisational 
context 
oTarget of 
Evaluation 
oAssets 
° Security 
requirements 
oRisk evaluation 
criteria 

I Identify risks I 

~ Jl I ~l'" risks 
,----''---------.,0 

:ii::~~:~:i~entslll 
° Vulnerabilities 

I 
I 

oConsequence estimates 
oIncident frequencies 
° Threat frequencies 

~ o 
I Evaluate risks I 

oRisk estimates 
° Risk priorities 
oRisk theme 
oRisktheme 

I relationships 
oRisk theme 
priorities 

I Treat risks I 

{7 
I ° Security policie~ 
i oRevised security 
requirements 
oSecurity 
architectures 
° Monitoring I 

--------------------~~------~~~ 

Figure 6. The relationship between concerns and the risk management process 

2.4 The integrated risk management and system 
development process 

The CORAS integrated risk management and system development process 
is based on an integration of the risk management process described above in 
the Unified Process (UP) [21]. In the following paragraphs we highlight the 
defining characteristics of this integrated process, as summarised in Figure 7. 

In analogy to UP, the system development process is both stepwise 
incremental and iterative. In each phase of the system lifecycle, sufficiently 
refined models of the system are constructed through subsequent iterations. 
Then the system lifecycle moves from one phase into another. In analogy to 
the RM-ODP viewpoints, the viewpoints of the CORAS framework are not 
layered; they are different abstractions of the same system focusing on 
different groups of stakeholders. Therefore, information in all viewpoints may 
be relevant to all phases of the lifecycle. 



www.manaraa.com

11. Model-Based Risk Assessment 

i 
E · . "" · . 
• 0 · . :!EO: 
.x · ii! 

· ~ 
.i!.x · " · . E ~ = • o E o • 
"':: 
~ 
ii! 

"' C-
Z 

"' 

~ 
::l 
C 

" 

IXX'UMENT 

iterate iterate 

~ ~ 
Choose a part C::~_Il4l:~c a._p~t1 

Architect a part Arc~jH'c_ta par:I ~ 
Anal_ysc a part Analyst.' a part ~ 

c.omp9Iic l~ Compose_in 

J'(,,\'if,-\\' riskfi I"fi'il'w risk$: 
and comnl1 3I1dc()ftf;RIf' 

DESIGN USrNG Concerns 

Choose a part 

Architect a part 

Anillysc_a pari,. 

Compost' in 

SUPPORTS 

iterate 

~.~.-.. : •...... 
~ -,,,hi"" • poe' 

Choose II part 

Anal~'sc a part 

Compos('in 

nvi('w riski(', J'("\'icw risk. 
and con""R and {'(HIUitf 

~-------""----. 
_I DESIGN USING 

~ 
DOCUMENT b ~ '& ~ DOCUMENT 

~ ~ G ::l 
UJO~< 

·i ~:.~e~~~~n mi. __ 1- 1 ! Computational - -m 
:> Engineering " 1 

Technology 1 __ _ 

SUPPORTS 

-

Figure 7. The integrated risk management and system development process 

197 

c 
'j; 
.c 
U 

"0 
0 
I-
"CI 
III ... 
!! 
= III ... 
.E 
"CI 
C 
IU 

E ... 
0 ... ... 
.!! 
II. 
C/) 
ca: 
It: 
0 
U 

The risk management process follows the main iterations made in the 
system development process, as indicated in Figure 8. Each of the main 
iterations adds more detail to the target and the context of the assessment and 
previous results may need to be re-evaluated. 

A set of agreed system requirements is one important outcome of the 
inception and elaboration phases. These requirements may be relevant to 
several viewpoints and can be described using a selection of different 
description methods, which are classified per concern. As one cannot expect 
that all security requirements are present from start, they have to be elicited. 
We anticipate that (appropriately adapted) model-based security risk 
assessment can also help with eliciting security requirements. However, risk 
assessment methods are traditionally designed to cope with unwanted 
incidents arising from design errors rather than specification problems related 
to missing requirements. For risk assessment to playa significant role in the 
elaboration phase, the CORAS risk assessment methods are being adapted to 
address requirement elicitation properly. 



www.manaraa.com

198 

Workflows 

Business 
Modelling 

Requirements 

Analysis & 
Design 

Chapter 11 

Inception Elaboration Construction Transitions 

Implementation .J,...=======:t==-----I--------=l====;;;:;;;;;:;;;;?j 

Testing 

Risk Assessment f-===;;z::IIL~==:r:2E!!!11Ll1t::::s::21id:TI 

Risk Managment 
(without assessment) 

Figure 8. Relating risk management to system development 

2.5 The platform for tool inclusion 

A platform for tool inclusion based on data integration is under 
construction. Its internal data representation is formalised in the Extensible 
Markup Language (XML) [5]. Based on the Extensible Stylesheet Language 
Transformations (XSL T) [7], relevant aspects of this data representation may 
be mapped to the internal data representations of other tools (and the other 
way around). This allows the inclusion of sophisticated case-tools targeting 
system development as well as risk assessment tools and tools for 
vulnerability and threat management. 



www.manaraa.com

11. Model-Based Risk Assessment 

Intrusion 
Detection Tools 
~ SccurityCriticalSystcm 

I 
• 

I UMLCASET~ 

=T~d,~--; 

199 

I 
X~fL ---+- Assessment EJ- ~;'k 

CORAS 
Spccifh: 
Tags 

Reusable Assessment 
Elements Repository 

~~~:--l 

Sp(xlfic
i CORAS l
~ CORAS

------------.. Platfonn

CORAS
Repository

• for Tool
Inclusion

Figure 9. The platform for tool inclusion

Tools

As indicated in Figure 9, the CORAS platfonn is supposed to offer three
interfaces for XML based data exchange:

Interface based on the Intrusion Detection Exchange Fonnat (IDMEF)
[11]. IDMEF is an XML DTD targeting tools for intrusion detection and
has been developed by the Intrusion Detection Working Group.

- Interface based on the XML Metadata Interchange (XMI) [29]
standardised by the Object Management Group and targeting tools for
UML modelling.
Interface targeting risk assessment tools.
The CORAS platfonn will contain a repository divided into two sub

repositories: (l) The assessment repository storing the concrete results from
already completed assessments and assessments in progress. (2) The reusable
elements repository storing reusable models, patterns and templates from
already completed risk assessments. Both sub-repositories mirror the
decomposition into viewpoints and concerns illustrated in Figure 4.

2.6 The risk assessment methodology

The CORAS risk assessment methodology is a careful integration of
techniques and fonnats inspired by HazOp Analysis [30], Fault Tree Analysis
(FTA) [14], Failure Mode and Effect Criticality Analysis (FMECA) [4],
Markov Analysis [25] as well as CRAMM [2].

www.manaraa.com

200 Chapter 11

The integrated risk assessment methods are to a large extent
complementary. They address confidentiality, integrity, availability as well as
accountability; in fact, as indicated by Table l, all types of
risks/threatslhazards associated with the target system can potentially be
revealed and dealt with using these methodologies. They also cover all phases
in the system development and maintenance process.

Table 1. The relevance of risk assessment methodologies
HAZOr FTA FMECA Markov CRAMM

Identify In case of Valuation
context brief system of assets

description

Identify Address all Top-down Bottom-up for Focus on
risks security starting from critical sub- data groups

aspects unwanted parts
outcomes

Analyse As input for Address top Address Address
risks FTAI events, basic failure modes system

FMECAI events, and and states, and
Markov likelihood consequences likelihood

Evaluate As input Compare Compare with Compare
risks with criteria criteria with criteria

Treat risks Identify Address Address Support Identify
treatment priorities barriers and maintenance counter-
options counter- measures

measures

3. CONTRACT-ORIENTED DOCUMENTATION OF
ASSESSMENT RESULTS

Risk assessments are both costly and time-consuming, and cannot be
carried out from scratch each time a system is updated or modified. This
motivates the need for specific methodology addressing the maintenance of
risk assessment results in particular, and a component-based approach to risk
assessment in general.

In the following we propose an approach to component-based risk
assessment based on contract-oriented documentation of risk assessment
results. An assessment contract consists of two parts, an assessment
assumption describing the target of evaluation as well as other pre-conditions
on which the assessment builds, and an assessment guarantee describing

www.manaraa.com

11. Model-Based Risk Assessment 201

assessment results for the component In question with respect to the
assessment assumption.

The documentation of risk assessment results in the form of assessment
contracts, mirrors the contract-like flavour of the risk management process.
As illustrated in Figure 5 the risk management sub-process "Identify Context"
involves: (1) Establishing the strategic, organisational and risk management
context. (2) Identifying and valuing assets. (3) Identifying existing security
policies and formulating risk evaluation criteria. The concerns documenting
the results from this sub-process constitute the assessment assumption.

The four subsequent sub-processes identifies, analyses, evaluates and
treats risks with respect to the assessment assumption resulting from the
"Identify Context" sub-process. In this sense, the concems documenting the
results from these four sub-processes constitute the assessment guarantee.
Hence, with respect to Figure 6, the concerns listed under "Identify Context"
records the assessment assumption, while the others capture the assessment
guarantee.

In the following we outline how the CORAS approach may be used to
support component-based risk assessment given that risk assessments are
documented in the form of assessment contracts as suggested above.

4. MAINTAINING ASSESSMENT RESULTS

IT systems are updated or modified on a regular basis. Connected to such
updates or modifications it is often necessary to reassess their security since
changes may have introduced new risks. In the next two sub-sections we
consider maintenance of assessment results with respect to two different kinds
of component modifications.

4.1 When components are maintained

In the following we address maintenance of risk assessment results for the
situation where a component for which we have already carried out a risk
assessment is updated or adjusted without being changed in a fundamental
manner.

The target for a risk assessment may only be a certain part or feature of the
component in question. Hence, the first step when maintaining a risk
assessment for a component undergoing minor updates is to check whether
the updates and adjustments are within the target of evaluation. If they are not
and they do not invalidate the conditions put down in the assessment
assumption, the existing assessment carryover unchanged.

On the other hand, if the updates and adjustments are within the target of
evaluation or invalidate the assessment assumption, it will be necessary to

www.manaraa.com

202 Chapter 11

reassess at least some of the concerns documenting the assessment guarantee.
CORAS is developing specialised rules and guidelines to support this kind of
reassessment exploiting relationships and dependencies between concerns.

4.2 When components are replaced

In the following we address the situation illustrated in Figure 9, where a
component for which we have already carried out a risk assessment is updated
by replacing one of its sub-components by a new sub-component. Assume we
have a component A+B+C consisting of three sub-components A, Band C.
Moreover, assume we have carried out a risk assessment for A+B+C
documented by the assessment RA:A+B+C. If sub-component C is replaced
by sub-component D then we would like a strategy for making use of the
assessment RA:A+B+C to arrive at an assessment RA:A+B+D of the new
component A+B+D.

A+B+C A+B+O

I RA:A+B+C I I RA:A+B~O I

Figure 9. Replacing sub-component C by D

In accordance with the previous case, the first step is to situate the old and
the new component with respect to the target of evaluation and the other
conditions put down in the assessment assumption. If neither C nor Dare
situated within the target of evaluation, and D does not invalidate the
assumptions on which the assessment RA:A+B+C depends, the validity of the
existing assessment carries over to A+B+D.

If this is not the case, specialised rules and guidelines exploiting
relationships and dependencies between concerns may be used to simplify the
reassessment. One simple rule is, for example, to check whether C contains a
security asset or not. If it does not, and in addition, black-box testing implies
that any external behaviour of D is an external behaviour of C, and D is
without security assets, we may conclude that the assessment results for
A+B+C remains valid for A+B+D.

Black-box testing will of course nonnally not cover all cases (there will
typically be infinitely many); hence, there is no guarantee that an important
test-case is not left-out. On the other hand, there is no guarantee that a risk
assessment will discover all threats.

www.manaraa.com

11. Model-Based Risk Assessment 203

5. COMPOSING ASSESSMENT RESULTS

In the following we address the situation illustrated in Figure 10, where
two components, A and B, for which we have risk assessment results RA:A
and RA:B, respectively, are composed. We indicate ways in which the
CORAS approach may support the deduction of risk assessment results for the
composite component from the assessment results for A and B.

nr-:l¢~~
~E I RAMB I

Figure 10. Composing assessment results

The first step is to situate the components A and B with respect to the
assumptions of the assessments RA:B and RA:A, respectively. Ifwe from this
inspection conclude that the component A and its composition with B does
not affect the target of evaluation RA:B nor any of the additional conditions
put down in its assessment assumption, and accordingly for B with respect to
RA:A, it follows that the assessments RA:A and RA:B are valid for A+B
(note that the assumptions of the two assessments remain unchanged).

The premises for this inference will of course often be invalid, in which
case more sophisticated rules and guidelines will be required to make full use
of the already existing assessment results. Rules and guidelines of this kind
are under development in the CORAS project.

6. REUSING ASSESSMENT RESULTS

Traditionally, system development methodologies focus on the
development of single systems. More recently, the emphasis has shifted
towards the development of system product lines. Inspired by [9], we define a
system product line, as a set of systems that share a common, managed set of
features satisfying the specific needs of a particular market segment or
mission and that are developed from a common set of core assets in a
prescribed way. According to [2], components provide the perfect foundation
for the practical application of product line development. Other examples of
product-line oriented system development methods are FODA [23], FAST
[33] and TIMe [6]. In the following we outline CORAS support for reuse of
assessment results in a product-line oriented system development.

www.manaraa.com

204 Chapter 11

A critical factor in the success of a product line approach is the nature of
the reusable "core". As argued in [2], " ... at a minimum this should contain a
reference architecture supported by techniques for capturing and selecting the
points of variation among family members. In its most general form, the
reusable asset takes the fonn of a framework, which embodies
implementation (i.e., code level) artefacts for the common parts of the family,
as well as higher-level design and architecture models. Since they embody
every possible reusable asset, at all levels of abstraction, frameworks
constitute the largest possible reusable artefacts for a particular product
family."

The CORAS framework is intended to support a product-line approach to
system development in the following sense.
- For each artefact we may store assessment relevant information in the

reusable elements repository. When a development of a new product is
initiated, this assessment relevant information will be loaded into the
assessment repository for each artefact to be reused.
If the particular use of an artefact requires maintenance, the assessment
relevant information will first be updated based on the strategy outlined in
Section 4.l.

- If a new product requires replacing a sub-component in an artefact to be
reused by another sub-component, the assessment relevant information
will first be updated based on the strategy outlined in Section 4.2.

- To the extent a new product requires composing artefacts, an assessment
of the composite artefact may be carried out based on the strategy outlined
in Section 5.

- To the extent a new product also requires the development of completely
new components from scratch, the reassessment of early assessment
results (for example, the results from an assessment carried out during the
inception phase) at a later point in the development may benefit from the
strategies outlined in Sections 4.1, 4.2 and 5.

7. CONCLUSIONS

CORAS advocates model-based risk assessment. Model-based risk
assessment is put forward as a means to improved efficiency of the risk
assessment process as well as more reliable assessment results, since the
understanding of the target of evaluation is enhanced by precise specifications
of its structure and behaviour. Firstly, we argue that UML diagrams give a
superior specification of system behaviour compared to free text or other
infonnal formats. Secondly, a model-based risk assessment facilitates
communication, both internally between the actors involved in the risk
assessment and externally to the stakeholders. Thirdly, improved precision is

www.manaraa.com

II. Model-Based Risk Assessment 205

not only of importance to understand the target of evaluation and the set of
possible threats, but also for the documentation of the risk assessment results
and the assumptions on which their validity depends. As explained in Sections
3-6, structured documentation of risk assessment results and the assumptions
on which they depend provides the basis for maintenance of assessment
results as well as a component-based approach to risk assessment.

The development of the CORAS methodology and framework is guided
by concrete experiences from two major trials, one within e-commerce and
one within telemedicine. Both trials are divided into three trial sessions.

There are of course other approaches to model-based risk assessment. See
for instance CRAMM [3], ATAM [S], SA [34] and RSDS [24]. The particular
angle of the CORAS approach with its emphasis on security and risk
assessment tightly integrated in a UML and RM-ODP is however new.

Contract-oriented specification has been suggested in many contexts and
under different names. Within the RM-ODP community one speaks of
contracts related to quality of service specification [12]. In the fonnal
methods community there are numerous variations; the pre/post [13], the
rely/guarantee [22] and the assumption/guarantee [2S] styles are all instances
of contract-oriented specification. Other more applied examples are the
design-by-contract paradigm, introduced by Bertrand Meyer [26], and the
UML based approach advocated by Mingins/Liu [27].

Since 1990, work has been going on to align and develop existing national
and international schemes in one, mutually accepted framework for testing IT
security functionality. The Common Criteria (CC) [IS] represents the
outcome of this work. The Common Criteria proj ect hannonises the European
"Infonnation Technology Security Evaluation Criteria (lTSEC) [20]", the
"Canadian Trusted Computer Product Evaluation Criteria (CTCPEC)" and the
American "Trusted Computer System Evaluation Criteria (TCSEC) and the
Federal Criteria (FC)". The CC is generic and does not provide methodology
for risk assessment. CORAS, on the other hand, is devoted to methodology
for risk assessment. Both the CC and CORAS places emphasis on semifonnal
and fonnal specification. However, contrary to the CC, CORAS addresses and
develops concrete specification technology addressing risk assessment. The
CC and CORAS are orthogonal approaches. The CC provides a common set
of requirements for the security functions of IT products and systems, as well
as a common set of requirements for assurance measures applied to the IT
functions of IT products and systems during a security evaluation. CORAS
provides specific methodology for one particular kind of assurance measure,
namely risk assessment of security critical systems.

www.manaraa.com

206 Chapter 11

REFERENCES

[I] ASfNZS 4360: 1999 Risk management.
[2] Atkinson, c., Bayer, 1., Bunse, c., Kamsties, E., Laitenberger, 0., Laqua, R., Muthig, D.,

Paech, 8., Wiist, J., Zettel, J. Component-based product line engineering with UML.
Addison-Wesley, 2002.

[3] Barber, B., Davey, J. The use of the CCTA risk analysis and management methodology
CRAMM. Proc. MEDINF092, North Holland, 1589-1593, 1992.

[4] Bouti, A., Ait Kadi, D. A state-of-the-art review ofFMEAIFMECA. International Journal

of reliability, quality and safety engineering 1:515-543, 1994.
[5] Bray, T., Paoli, 1., Sperberg-McQueen, C. M., Maler, E. Extensible markup language

(XML) 1.0 (Second edition). World Wide Web Consortium recommendation REC-xml,
October 2000.

[6] Br<ek, R., G01111an, 1., Haugen, 0., Melby, G., Moller-Pedersen, B., Sanders, R. Quality by
construction exemplified by TIMe - the integrated methodology. Telektronikk 95(I):73-
82,1999.

[7] Clark, 1. XSL transfo1111ations (XSLT) 1.0, World Wide Web Consortium
recommendation REC-xslt, November 1999.

[8] Clements, P., Kazman, R., Klein, M. Evaluating software architectures: methods and case
studies. Addison-Wesley, 2002.

[9] Clements, P., Northrop, L. Software product lines: practices and patterns. Addision
Wesley, 2001.

[10] CORAS: A platfo1111 for risk analysis of security critical systems. 1ST -2000-25031, 2000.
(http://www.m.no/coras/)

[II] Curry, D., Debar Merrill Lynch, H. Intrusion detection message exchange f01111at
(IDMEF). Working draft, December 28, 2001.

[12] Fevrier, A., Najm, E., Stefani, J. B. Contracts for ODP. Proc. ARTS97, LNCS, 1997.
[13] Hoare, C. A. R. An axiomatic basis for computer programming. Communications of the

ACM, 12:576-583, 1969.
[14] IEC 1025: 1990 Fault tree analysis (FT A).
[15) IEC 61508: 2000 Functional safety of electrical/electronic/programmable safety related

systems.
[16) ISO/IEC 10746: 1995 Basic reference model for open distributed processing.
[17) ISO/IEC TR 13335-1 :2001: Info1111ation technology - Guidelines for the management of

IT Security - Part I: Concepts and models for IT Security.
[18] ISO/IEC 15408: 1999 Info1111ation technology - Security techniques - Evaluation criteria

for IT security.
[19) ISO/IEC 17799: 2000 Info1111ation technology - Code of practise for info1111ation security

management.
[20)lnfo1111ation technology security evaluation criteria (ITSEC), version 1.2, Office for

Official Publications of the European Communities, June 1991.
[21] Jacobson. I., Rumbaugh, J., Booch, G. The unified software development process.

Addison-Wesley, 1999.
[22) Jones, C. B. Development methods for computer programs including a notion of

interference. PhD-thesis, Oxford University, 1981.
[23] Kang, K. c., Cohen, S. G., Novak, W. E., Peterson, A. S. Feature-oriented domain

analaysis (FODA) feasibility study. Technical report UMIAC-TR-21, SEI, 1990.
[24) Lano, K., Androutsopoulos, K., Clark, D. Structuring and design ofreactive systems using

RSDS and B. Proc. FASE 2000, LNCS 1783,97-111,2000.

www.manaraa.com

11. Model-Based Risk Assessment 207

[25] Littlewood, B. A reliability model for systems with Markov structure. Appl. Stat. 24: 172-
177,1975.

[26] Meyer, B. Object-oriented software construction. Prentice Hall, 1997.
[27] Mingis, c., Liu, Y. From UML to design by contract. Journal of object-oriented

programming, April issue: 6-9,2001.
[28] Misra, J., Chandy, K. M. Proofs of networks of processes. IEEE transactions on software

engineering, 7:417-426,1981.
[29] OMG-XML Metadata Interchange (XMI) Specification, v1.2, http://www.omg.org.
[30] Redmill, F., Chudleigh, M., Catmur, J. Hazop and software hazop. Wiley, 1999.
[31] Sindre, G., Opdahl, A. L. Eliciting security requirements by misuse cases. In Proc.

TOOLS] ACIFIC 2000. IEEE Computer Society Press, 120-131, 2000.
[32] UML proposal to the Object management group, Version 1.4,2000.
[33] Weiss, D. M. and Lai, C. T. R. Software product line engineering: a family based software

engineering process. Addison-Wesley, 1999.
[34] Wyss, G. D., Craft, R. L., Funkhouser, D. R. The use of object-oriented analysis methods

in surety analysis. SAND Report 99- J 242. Sandia National Laboratories, 1999.

www.manaraa.com

Chapter 12

A Vocabulary of Building Elements for Real-Time
Systems Architectures

Jose Luis Fernandez-Sanchez
Universidad Polilixllica de Madrid, Spain

Abstract: This chapter describes the elements that define the PPOOA vocabulary created
for its application in Real-Time Systems architecture development. These
building elements are: components, or computation entities, and coordination
mechanisms, responsible for data transmission and process synchronization,
Each of these elements has several real-time attributes that allow a design
assessment using analytical methods, In this case, we recommend the "Rate
Monotonic Analysis" time responsiveness assessment techniques, PPOOA is
described here as a UML Profile, that is a group ofUML model elements
customized for real-time systems domain,

Key words: Real-Time systems, UML, component-based development, software
architecture

1. INTRODUCTION

A software architectural style defines a family of systems in terms of
structural and organizational patterns. This means that a software architectural
style is defined by a vocabulary of building elements that can be used by
developers considering the constraints and design rules imposed by the
architecture style.

A comparison can be made with building styles; the building elements
(arcs, columns, etc.) and their organization makes a gothic cathedral different
from a romanic cathedral in spite of being used for the same purpose:
worship.

www.manaraa.com

210 Chapter 12

PPOOA, Pipelines of Processes in Object Oriented Architectures, is a
software architecture style to be used in those object oriented systems in
which individual paths of execution are required to be concurrent and multiple
processes may be positioned along the path to control the action [1].

This chapter presents the PPOOA vocabulary or classification of the
building elements: components and coordination mechanisms, that will be
used in the real-time applications development, using the above mentioned
software architecture style.

Section 2 describes other related vocabularies. Section 3 describes the
PPOOA component and coordination mechanism concepts. Section 4 presents
the catalogue of PPOOA components. Section 5 describes PPOOA
coordination mechanisms features. Section 6 outlines UML metamodel
extension to include PPOOA building elements.

2. RELATED WORK ON REAL-TIME SYSTEMS
VOCABULARIES

There are other vocabularies for real-time systems that have been
developed before this one and that have been used as a main reference.

Frankel describes a vocabulary for building elements in Ada 83, and
therefore building elements are considered as Ada packages. These are
Definition Package, Abstract Data Type, Flow Package, Algorithmic Package,
Entity Package and Active Class Package [2].

leffay proposes a specific vocabulary for real-time systems supported by a
theory that analyzes real-time properties. This theory permits the scheduling
of the system taking into account the frequency of tasks, the entry flows in the
external devices and the load placed on shared resources. The applications
considered are multimedia applications. The author proposes the following
vocabulary: Devices, Processes, Resources and Coordination Mechanisms [3].

Bums et aI, supply a vocabulary and a methodology in order to cover the
deficiencies found in the HOOD (Hierarchical Object Oriented Design)
methodology used by the ESA (European Space Agency) in the development
of space systems. The central deficiencies were the support of periodic and
aperiodic processes and the coordination of concurrent flows of activities. The
authors of HRT -HOOD propose a vocabulary including passive object, active
object, protected object, cyclic object and sporadic object [4].

The vocabulary is supported by a scheduling theory. The vocabulary
proposed in HRT-HOOD is determined by implementation aspects and this is
why it is useful for detailed design. It would not be easy to apply it in
preliminary designs, principal goal of the PPOOA vocabulary, or in the
description of a reference architecture. However, it has been very useful for
the construction of the vocabulary proposed in the PPOOA style.

www.manaraa.com

12. A Vocabulmy of Building Elements 211

Other vocabularies have recently been proposed in conjunction with UML
standard evolution.

Gomaa provides a vocabulary that organizes classes into groups
considering that different types of systems will have a preponderance of
classes in one or another category. The object structuring categories are as
follows: Interface object, Entity object, Control object and Application logic
object. The vocabulary is complemented with a method for concurrent object
modeling [5].

Another recent vocabulary for real-time systems is proposed by Rational.
The central architectural entity is the capsule. Capsules may have one or more
special attributes called ports. Ports perform a two-way interface function on
behalf their capsule [6].

3. PPOOA VOCABULARY DESCRIPTION

The vocabulary of building elements for real-time systems proposed in the
PPOOA style consists of: Component and Coordination Mechanism (Figure
1).

PPOOA Building Element

Component Coordination Mechanism

Figure I. Basic Vocabulary of the PPOOA Architecture Style

Each of the basic elements is specialized in several kinds of elements as
described later.

3.1 Components

The component represents a computing entity implementing one or more
activities. It may provide and require interfaces to other components.

The PPOOA component is not exactly the same building element as the
UML component, that is considered as a physical on replaceable part of a
system.

www.manaraa.com

212 Chapter 12

PPOOA components are classified as: Algorithmic Component, Domain
Component, Process, Structure, Controller Object and Subsystem.

Figure 2 shows the chosen vocabulary because it allows the representation
of objects and explicit concurrency for an architecture in the real-time
domain. The description of each component type is presented in the next
section.

Algorithmic
Component

Domain
Component

Component

Structure Process

Figure 2. Architecture Components

3.2 Coordination Mechanisms

Controller
Object

I
Subsystem

A coordination mechanism is an essential element of the PPOOA
vocabulary. Its classification and categorization have been an essential part of
PPOOA development.

A coordination mechanism provides the capabilities to synchronize or
communicate components. Synchronization implies the blocking of a process
until some specified condition is met. Communication is the transfer of
information between components.

As part of the development of the PPOOA vocabulary, fourteen
coordination mechanisms were analyzed and a taxonomy was developed [7].
Of those mechanisms, the following have been finally selected:

Bounded Buffer
General Semaphore
Mailbox
Transporter
Rendezvous
These mechanisms have been selected because they are frequently used in

pipelined real-time software architectures.
Figure 3 shows a scheme with the coordination mechanisms vocabulary.

The description of these mechanisms is presented later.

www.manaraa.com

12. A Vocabulmy of Building Elements

I
Bounded
Buffer

General
Semaphore

Coordination Mechanism

I
Mailbox

I
Rendezvous

Figure 3. Coordination Mechanisms

Transporter

4. PPOOA COMPONENTS DESCRIPTION

213

The proposed PPOOA components that are the building elements of the
architecture are described in three ways: Concept, Context and Content of the
component. In the description of a concrete system architecture, the detailed
context and content or implementation issues, of each participant component
will be provided.

The concept or supported abstraction is provided through a brief textual
description. Also an enumeration of real-time attributes that describe the
component behavior from a time responsiveness point of view, is given.

The provided operations are described with an architectural language,
similar to UniCon [8] that emphasizes the structural aspects of the interface.

The notation used is:
INTERFACE IS

NAME operation name

TYPE operation type (Reading, Writing, Computing, Signaling)

PARAMETERS (parameters, types of parameters)

As a description enhancement, the Object Constraint Language (OCL)
may be used to describe each interface operation precondition and
postcondition [9].

Implementation issues are described. Particularly, design decisions that
may impact on real-time behavior, and component composition constraints,
that may impact on the structural properties of the developed architecture.

Information about the interfaces required by each component is also
provided when a concrete architecture is designed.

An important issue is to take into account whether the component requires
or not an execution flow ("thread") independent of the other components of
the architecture.

Several instances of the same component may participate in a concrete
architecture for a concrete system.

www.manaraa.com

214 Chapter 12

4.1 Algorithmic Component

1. Abstraction supported
Algorithmic components or utilities are elements of the architecture that

perform calculations or transform data from one type to another but are
separated from its structural abstraction. They are typically represented by
data classification components or data processing algorithms.

The algorithm component in PPOOA is not exactly the same as the utility
defined in the UML metamodel since the algorithmic component may have
instances.

Real-time attributes: execution time of the activities implemented by the
algorithmic component.
2. Interface Provided

It basically provides computing operations by calling implemented
methods.
3. Implementation

This component does not need an independent execution flow, since this
component does not implement parallel activities.

If this component is an aggregate, it can only be decomposed into:
algorithmic component, domain component or structure. However, this
component is usually a primitive or atomic component.

4.2 Domain Component

1. Abstraction supported
The domain component is an element of the architecture that responds

directly to the modeled problem. This component does not depend on any
hardware or user interface. It resembles the class concept in oriented object
design.

Real-time attributes:
Execution time of each activity implemented by the domain component.
Blocking. Blocking is a waiting condition that is not attributable to
preemption. Blocking time estimation is done at architecture assessment.

- Priority (optional). Priority policy has to be considered if the concurrent
access of the domain component is permitted.

2. Interface provided
It basically provides reading, writing or computing operations by calling

implemented methods.
3. Implementation

This component does not need an independent execution flow. This
component does not also implement parallel activities.

If this component is an aggregate, it can only be decomposed into:
algorithmic component, domain component or structure. In addition, it is quite

www.manaraa.com

12. A Vocabulwy of Building Elements 215

usual that this component has persistence requirements. Finally, the blocking
times, if any, have to be analyzable.

4.3 Structure

1. Abstraction supported
A structure is a component that denotes an object or class of objects

characterized as an abstract state machine or an abstract data type.
Typical examples are: stack, queue, list, ring and others.
Real-time attributes: execution time of each activity implemented by the

structure.
2. Interface provided

It basically provides reading or writing operations by calling implemented
methods. These operations are also known as selectors or constructors.

A selector is an operation that evaluates the state of the structure. A
constructor is an operation that alters the state of the structure. In the most
general case, an iterator can also be supported. An iterator is an operation that
allows visiting all of the parts of the structure.
3. Implementation

This component only allows concurrent operations when they are
implemented in a protected way [4]. This means that the time when the calls
to operations are executed is controlled and they cannot call spontaneously
operations in other components. In general they cannot have arbitrary
synchronous constraints and their blocking times have to be analyzable. They
do not require an execution flow independent of the caller.

Structure is considered as a primitive or atomic component so it cannot be
decomposed into other components.

4.4 Process

1. Abstraction supported
The process is a building element of the architecture that implements an

activity or group of activities that can be executed at the same time as other
processes. Its execution can be scheduled.

Real-time attributes:
Execution time of each activity implemented by the process.
Priority.
Shared resources blocking. Blocking time estimation is done at
architecture assessment.
Offset (optional).
The PPOOA vocabulary supports two different types of processes: cyclic

and aperiodic. Each of them is now described including their specific real
time attributes.

www.manaraa.com

216 Chapter 12

a) Cyclic process: the cyclic process is used to implement an activity or
group of activities that execute periodically. It has the following specific
real-time attributes: execution period.

b) Aperiodic process: the aperiodic process is used to implement an activity
or group of activities that execute aperiodically. It has the following
specific real-time attributes: activation pattern characterizing process
activation occurrences.

2. Interface provided
In general, cyclic processes do not provide operations. The aperiodic

process provides an activating operation in order to execute its executing
flow. This operation should not block the caller. Other operations can be
provided, but they should be executed immediately when called. They are
called unconstrained operations in the HRT-HOOD terminology [4].
3. Implementation
a) Cyclic process: in the proposed architectural style, the cyclic process

communicates with other processes by means of coordination
mechanisms, which are described later. The only operations that a cyclic
process can supply are asynchronous control transfers, generally used to
notify mode changes or error conditions. As it is an aggregate component,
the cyclic process can include domain components, structures, cyclic
processes and aperiodic processes. The constraints of the aggregation are
imposed by temporal requirements.

b) Aperiodic Process: the aperiodic process can supply other operations
different from the activation operation, but these have to be unconstrained
as mentioned above, and they have to be executed in the same way as the
operations provided by domain components. The activation operation
should not block the caller. As it is an aggregate component, the aperiodic
process can include algorithmic components, domain components,
structures, cyclic processes and aperiodic processes. The constraints of the
aggregation are imposed by temporal requirements.

4.5 Controller Object

1. Abstraction supported
The controller object is responsible for initiating and managing directly a

group of activities that can be repetitive, alternative or parallel. These
activities can be executed depending on a number of events or circumstances.

Typically, a controller object receives an event. An event is something that
can be notified to the system, like a POSIX signal, a hardware interrupt or a
computed event, like an airplane entering a forbidden region or an alarm.

When one of these events occurs, the system schedules the associated
event handlers.

www.manaraa.com

12. A Vocabulmy of Building Elements 217

A controller object manages two things: the dispatching of handlers when
the event is fired, and the set of handlers associated with the event. The
application can query the set and add or remove handlers.

The controller object has associated scheduling parameters that control the
actual execution of the handler once it is fired. When an event is fired, the
system executes the handlers asynchronously, scheduling them according to
their parameters. The result is that the handler appears to have been assigned
to its own thread. It is managing other components rather than supplying
operations that depend on the application domain.

Real-time attributes:
- Priority per thread.
- Shared resources blocking. Blocking time estimation is done at

architecture assessment.
- Execution time per activity implemented by the controller.
- Deadline or latest permissible completion time measured from the release

time of the associated invocation of the schedulable object.
2. Interface provided

It supplies reading, writing, computing or signaling operations in a general
way.
3. Implementation

The controller object is the most complicated component of all from an
implementation point of view. Its implementation can be quite similar to that
of the active object defined by HRT-HOOD [4]. The component can control
the moment when the operation calls are executed and can make operation
calls to other objects spontaneously. As the controller object is quite
complicated, problems can arise in the schedulability analysis. This is why its
use should be limited.

A possible implementation is the asynchronous event handling facility of
real-time Java. It comprises two classes: AsyncEvent and
AsyncEventHandler. An AsyncEvent manages two things: the dispatching of
handlers when the event is fired, and the set of handlers associated with the
event. An AsyncEventHandler is a schedulable object roughly similar to a
Java thread [10].

In case the controller object is an aggregate component, it can include any
type of component, even a component of the same type.

4.6 Subsystem

1. Abstraction supported
A subsystem is a component that clusters other components of the

architecture based on the minimizing coupling and enhancing visibility
criteria.

Subsystems have the following characteristics:

www.manaraa.com

218 Chapter 12

Logic coherence. The provided operations are related to one another
logically.
Independence. Subsystems can be implemented as implementation
components.

- Simple interfaces. Subsystems communicate with each other through
simple and well defined interfaces.
The coupling reduction and the supply of simple interfaces are achieved in

subsystems considering the "Fa9ade" design pattern [11]. A fa9ade supplies
only one view of the subsystem that is useful for its clients. The Fa9ade
knows exactly what components of the subsystem are responsible for solving
a certain operation request and delegates such request to the corresponding
components.

The Fa9ade pattern is not used when asynchronous communication or
synchronization between process components, are established between
processes allocated to different subsystems. In this case, coordination
mechanisms are used as intennediaries in an architecture developed with the
PPOOA style vocabulary.
2. Interface provided

The subsystem provides, through its Fa9ade, general reading, wntmg,
computing or signaling operations. As mentioned above, coordination
mechanisms are used to synchronize and communicate process components
contained in the subsystem.
3. Implementation

The subsystem supplies an interface that is implemented as a method
invocation. As subsystems are building elements that cluster other elements,
they may contain any other element of the PPOOA vocabulary.

5. PPOOA COORDINATION MECHANISMS

One of the contributions of the PPOOA vocabulary is the ability to model
the coordination mechanisms properties accordingly to the FODA Feature
Oriented Domain Analysis methodology [12]. FODA was applied as a novelty
because it was the first time that it was used in the analysis and classification
taxonomy of fourteen real-time coordination mechanisms [7]. Not all of these
mechanisms have been chosen as building elements in the PPOOA
vocabulary.

The identification attributes represent those features that describe how
coordinating partners refer to each other. There are two main categories or
identification schemes: direct and indirect. Direct naming is used when the
process component that needs to be synchronized or needs to communicate
with another has to explicitly name the recipient partner. In contrast, indirect
naming is used when the processes that need to be coordinated utilize some

www.manaraa.com

12. A Vocabulwy of Building Elements 219

type of intermediate object, the coordination mechanism, where they
introduce or extract the information that is going to be transmitted, so that the
identity of coordinating partners remains hidden. The synchronizing attributes
describe those features related to the exclusion and ordering constraints of the
coordination mechanisms (Figure 4).

Internal
State

Exclusion (one of:3)

Synchronization
State

Synchronization

Ordering (one of:3)

History Priority Time of
Arrival

Figure 4. Synchronisation Features

Both

The exclusion constraint features describe the properties that guarantee the
blocking of certain processes that are attempting to access the coordination
mechanism when they would interfere with the activities already in progress
by other processes. Some coordination mechanisms support exclusion of
client processes according to the internal state of the mechanism. A second
group of mechanisms supports exclusion according to the synchronization
state of the mechanism. A third group of mechanisms supports exclusion
according to the history that has occurred previously. Exclusion also considers
the number of client processes that are allowed to access the mechanism.

Ordering constraint features are concerned with the prioritization of the
client requests to be processed. Sometimes requests are queued based on the
client priority. Another group of coordination mechanisms orders the requests
by their time of arrival.

Communication features describe the communication capabilities of the
coordination mechanism. For the mechanisms analyzed, there are three child
features to represent communication properties: storage capacity, direction of
data flow and the volume of information transmitted (Figure 5).

www.manaraa.com

220

Communication (tuple of:3)

Storage Direction of
Capacity (one of:3) Data Flow (one of:3)

I I I
Null Bounded Unbounded

I I I
None Unidirectional Bidirectional

Figure 5. Communication Features

Chapter 12

Transmitted
Information (one of:3)

I I I
None Unitary MUltiple

The storage capacity characterizes the capacity of the coordination
mechanism for buffering the events or messages transferred between
communicating partners. The capacity may be either null, bounded or
unbounded.

The data flow direction indicates whether the data exchanged between
client processes (those that use the same coordination mechanism) can be sent
in one or two directions. When the mechanism is only a synchronization
mechanism there is no data flow.

The size of information transmitted between two or more communicating
partners can be none, unitary or multiple (more than one piece of
information). When the size is variable, as it may be in the multiple case, it
can be quite difficult to guarantee a predictable real-time behavior.

The operations provided by each of the mechanisms are described
following a notation similar to the one used to describe the PPOOA
components.

The implementation features denote those features related to the
realization of the coordination mechanism for a particular environment.

The implementation issues of the coordination mechanisms that affect the
design are those that have an impact on the dynamic behavior of the
architecture. This means that they can affect the schedulability of the software
architecture from a temporal point of view and may imply some missed
deadlines. There are two issues to be considered:

Avoidance of unbounded priority inversion. In the unbounded priority
inversion, a low priority process uses a resource whereas a higher priority
process is forced to wait for the resource for some period of time [13].
Avoidance, when possible, of independent flows of execution ("threads")
in coordination mechanisms. Avoiding independent execution flows

www.manaraa.com

12. A Vocabulal)' of Building Elements 221

("threads") when implementing coordination mechanisms decreases the
overhead caused by context switching.
From a building point of view, the PPOOA vocabulary does not support

aggregated coordination mechanisms because this would unnecessarily
complicate the schedulability analysis.

5.1 Bounded-Buffer

The bounded buffer, also called buffer or queue of messages, is a
temporary data holding area. Data producers and consumers make calls to
send and get data from the bounded-buffer. Since the producers and
consumers can run concurrently, the buffer has a predefined capacity for
storing data.

The main features defined according to the PPOOA taxonomy are:
- Identification: Indirect.

Synchronization: Exclusion (Internal State), Ordering (Temporal).
- Communication: Storage Capacity (Bounded), Direction of the Data Flow

(One Direction), Transmitted Information (Multiple, Fixed Length).

5.2 General Semaphore

The general-semaphore is a non-negative integer value used as a
synchronization mechanism. It is used to synchronize processes or control the
access to a critical region.

The main features defined according to the PPOOA taxonomy are:
- Identification: Indirect.
- Synchronization: Exclusion (Internal State), Ordering (Temporal).

Communication: Storage Capacity (Null), Direction of the Data Flow
(Does not apply), Transmitted Information (None).

5.3 Mailbox

The mailbox is a mechanism that is used to pass messages, which may
possibly have a variable length, between processes in an asynchronous mode.

The main features defined according to the PPOOA taxonomy are:
- Identification: Indirect.
- Synchronization: Exclusion (History), Ordering (Temporal and/or

Priority).
- Communication: Storage Capacity (Null), Direction of the Data Flow (One

Direction), Transmitted Information (Multiple, Variable Length).

www.manaraa.com

222 Chapter 12

5.4 Rendezvous

The rendezvous is a synchronous and unbuffered coordination mechanism
that allows two processes to communicate bidirectionaly. In this case, the
processes may be implemented as Ada tasks.

The main features defined according to the PPOOA taxonomy are:
- Identification: Direct, Asymmetric.
- Synchronization: Exclusion (History), Ordering (Temporal).
- Communication: Storage Capacity (Null), Direction of the Data Flow

(Bidirectional), Transmitted Information (Unitary, Fixed Length).

5.5 Transporter

A transporter can be considered to be an active data mover. The
transporter makes calls to get and send messages from and to the coordinating
partners (producer and consumer).

The main features defined according to the PPOOA taxonomy are:
- Identification: Indirect.
- Synchronization: Exclusion (History), Ordering (Temporal).
- Communication: Storage Capacity (Null), Direction of the Data Flow (One

Direction), Transmitted Information (Multiple, Fixed Length).

6. UML METAMODEL EXTENSION TO INCLUDE
PPOOA BUILDING ELEMENTS

UML stereotypes may be used to include the PPOOA vocabulary in the
UML metamodel. The PPOOA profile has been created in order to extend the
UML metamodel [14]. The PPOOA profile is built with the PPOOA elements
that have been described above.

The UML Classifier is extended with other building elements that are
characteristic of the PPOOA vocabulary. This is shown in the PPOOA
Building Elements metamodel (Figure 6). A Classifier is a UML model
element that describes behavioral and structural features. The Class element is
a kind of Classifier that represents a concept within the system being
modeled. It describes both the data structure and the behavior of a set of
objects. A Class may provide or require interfaces.

In the PPOOA profile different kinds of classes are considered (Figure 6):
Active_Class, Domain_Component, Algorithmic_Component, Structure and
Coordination_Mechanism. Real-time domain independent attributes are
depicted for each building element. These attributes are essential for applying
time responsiveness assessment techniques, specifically RMA.

www.manaraa.com

12. A VocabulaTY of Building Elements 223

An Active Class is a UML element. It is a class whose instances are active
objects. Two types of Active_Classes are considered: Thread and Controller.

Threads or light processes are treated in a special way, as they are divided
in periodic and aperiodic. The Periodic_Process and the
Aperiodic_Process are PPOOA metaclasses. As described previously,
several real-time attributes such as priority, shared resources blocking
time, offset and execution time per activity, have to be defined for each of
the processes. The execution period in the periodic processes and the
activation pattern in the aperiodic processes are also essential attributes
that have to be determined during the architectural modeling of a real-time
system.
The Controller is a PPOOA element that is responsible for directly
initiating and managing a group of activities that can be repetitive,
alternative or parallel. Certain real-time attributes have to be defined:
priority per thread, shared resources blocking time, execution time per
activity and deadline.
Figure 6 shows how coordination mechanisms are a specialization of the

UML "class" concept. New stereotypes have been created in PPOOA for
these coordination mechanisms: «semaphore», «mailbox»,
«rendezvous», «transporter». These stereotypes will allow different
iconic representations for these mechanisms.

www.manaraa.com

224

i('d_(~!).():I\N~

JIa1N(nl\1l'U):~)

~1f1\l(m)::"t.~)

·(ia)I .. ~';:_ OU(): 1\1IIti\dnqu
~{'d.I\.1.~...,viohL(IJ1J{If(I;!\l'lIb~):I"'IU\~

Figure 6. PPOOA Profile

7. CONCLUSION

Chapter 12

~ ... ,

We have presented a proposal for a sophisticated extension of the UML
metamodel for real-time systems, in order to allow the earlier assessment of
the time-responsiveness properties of a system. This assessment can be
performed as soon as during the architecting phase of the system
development.

This initial assessment may not be as accurate as it will be after
implementation of the system architecture components when execution times
can be measured precisely, but we can use the proposed PPOOA vocabulary
and assessment approach to compare design alternatives before the detailed
design phase. This approach saves simulation and testing effort.

The proposed vocabulary may be implemented in any CASE tool
supporting UML extension mechanisms. A prototype tool implementing the
PPOOA vocabulary has been developed. The vocabulary and tool have been

www.manaraa.com

12. A VocabulQly of Building Elements 225

used for real-time data acquisition, aerospace and telecom systems. An
architecting process and design guidelines are also defined.

ACKNOWLEDGEMENTS

This work is partly supported by research funded from the European
Union 1ST, 5th Framework Programme (1ST-1999-20608).

REFERENCES

[I] 1.L. Fernandez. An Architectural Style/or Object Oriented Real-Time Systems. Fifth
International Conference on Software Reuse. Victoria (Canada), IEEE 1998.

[2] M. Frankel. Analysis Architecture Models to ASG Models: Enabling the Transition.
Proceedings Tri Ada. 1992.

[3] K. leffay, The Real-Time Producer/Consumer Paradigm: A Paradigm for the Construction
of Efficient, Predictable Real-Time Systems. Proceedings of the ACMISIGAPP Symposium
on Applied Computing. Indianapolis, 1993.

[4] A. Bums, A. Wellings. HRT-HOOD: A Structure Design Method/or Hard Real-Time Ada
Systems. Elsevier Science B.V. Amsterdam, 1995.

[5] H. Gomaa. Designing Concurrent, Distributed and Real-Time Applications with UML.
Addison Wesley/Pearson, Upper Saddle River, NJ, 2000.

[6] B. Selic. Turning Clockwise: Using UML in the Real-Time Domain. Communications of the
ACM Vol 42 No 10, October 1999, pp 46-54.

[7] J.L. Fernandez. A Taxonomy o/Coordination Mechanisms Used in Real-Time Software
Based on Domain Analysis. CMU/SEI-93-TR-34. Software Engineering Institute.
Pittsburgh, 1993.

[8] M. Shaw, D. Garlan. So/nl'are Architecture. Perspectives on all Emerging Discipline.
Prentice Hall.Upper Saddle River,New Jersey. 1996.

[9] 1. Warmer, A. Kleppe. The Object Conslraillt Language. Precise Modeling with UML.
Addison Wesley Longman, Reading, MA, 1999.

[10] G. Botella and 1. Gosling. The Real-Time Specification/or Java. IEEE Computer June
2000, pp 47-54.

[II] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Pat/ems. Elements 0/ Reusable
Object-Oriented Software. Addison Wesley, Reading MA, 1995.

[12] K.C. Kang, S.G. Cohen, lA. Hess, W.E. Novak, A.S. Peterson. Feature Oriented Domain
Analysis (FODA). Technical Report CMu/SEI-90-TR-21. Software Engineering Institute.
Pittsburgh, November 1990.

[13] M.H. Klein, T. Ralya, B. Pollak, R. Obenza, M. Gonzalez Harbour. A Practitioner's
Handbook/or Real-time Analysis: Guide to Rate Monotonic Analysis/or Real-Time
Systems. Kluwer Academic Publishers, Dordrecht, 1993.

[14] 1.L. Fernandez, A. Monzon. Extending UML/or Real-Time Component Based Architectures.
International Conference on Software & Systems Engineering. Paris (France). December 200 I.

www.manaraa.com

Chapter 13

COTS Component-Based System Development
Processes and Problems

Gerald Kotonya', Walter Onyino', John Hutchinson', Pete Sawyer' and Joan
Canal2

iLancaster University. UK; cccs. Spain

Abstract: Component-based software engineering (CBSE) represents an emerging
development paradigm based on assembling software systems from pre
fabricated components. This chapter discusses the promises and challenges of
component-based system development. The authors propose a component-based
system development process and use it as a basis for the discussion.
Requirements engineering, system design, composition, verification and
management are discussed in this context.

Key words: CBSE, processes, COTS software, requirements, design, composition,
management

1. INTRODUCTION

Component-based software development (CBD) is being proposed as a
means of reducing complexity and cost in software development. The drive to
use components to construct software systems stems from a 'parts'
philosophy derived from traditional engineering disciplines that promises
instant productivity gains, accelerated time to market and lower development
costs. However, software component technology is still immature and poses
many problems for organisations intending to adopt it. Component-based
system development proceeds by composing software systems from reusable
components (often blackbox third-party software). However, the features
supported by Commercial Off-The-Shelf (COTS) software components vary
greatly in quality and complexity. Application contexts in which the
components are used also vary considerably. This complexity together with

www.manaraa.com

228 Chapter 13

the variability in application domains means that specifications delivered with
COTS software are likely to be incomplete or inadequate. In addition most
COTS components are generally not "plug-and-play" and may require
significant effort to adapt them to new situations.

The other more fundamental problem is that traditional software
development models do not address the needs of component-based system
development. Boehm [1] regards both the waterfall and evolutionary
development model as unsuitable for component-based development for the
following reasons:
- In the waterfall model requirements are identified at an earlier stage and

the components chosen at a later stage. This increases the likelihood of the
components not offering or supporting required features.

- Evolutionary development assumes that additional features can be added if
required. However, the inaccessibility of component code prevents
developers from adjusting them to their needs.
Many of these problems are unique to the componentware paradigm and

are a consequence of the blackbox nature of COTS software and its volatility
[2]:
- Poor documentation. COTS software components are almost always

delivered as blackbox components with limited specification that focus on
functional properties. This makes it difficult to predict how components
might behave under different load conditions and contexts.

- Poor support for integration. Most component integration processes suffer
from the lack of interoperability standards amongst different component
models.

- Limited adaptability. COTS software components are generally not
tailorable or "plug and play". Significant effort is often required to build
wrappers and "glue" between components in order to evolve applications
and to tailor components to new situations.

- Design assumptions. The design assumptions of a COTS component are
largely unknown to the application builder. In a situation where many
complex functions are replaced by a single large-grain COTS component
this may have serious implications for exception handling and critical
quality attributes.
COTS volatility. COTS software is subject to frequent upgrades. This often
leads to a disparity in customer-producer evolution cycles and may result
in unplanned upgrades being forced on the customer.
Vulnerability risk. The use of COTS software introduces a vulnerability
risk that may compromise system dependability (i.e. performance,
reliability, availability, safety or security). This is particularly critical for
safety-related and distributed systems where abnonnal system behaviour
or unauthorised system access may result in injury or loss of infonnation.

www.manaraa.com

13. COTS Component-Based System Development 229

- Component mismatch. COTS components in heterogeneous environments
are likely to suffer from mismatches due to different data models,
functional mismatches or resource conflicts.
These problems underpin the need for software engineering process

models that can balance aspects of system requirements, business and project
concerns, with the architectural assumptions and capabilities embodied in
COTS software. The next sections describe the processes for developing
component-based applications from COTS software, and discuss the problems
associated with each development stage. Possible ways of addressing the
problems are also suggested.

2. COTS-BASED DEVELOPMENT PROCESS

There are two broad development processes in component-based software
engineering: component development and component-based system
development (e.g. COTS-based software development). The component
development process is concerned with the analysis of domains and
development of generic and domain-specific components (i.e. development
for reuse). To achieve successful software reuse, commonalties of related
systems must be discovered and represented in a form that can be exploited in
developing similar systems. Once reusable components are created, they can
be made available on the open market as COTS software through distribution
networks (i.e. component vendors and brokers). COTS software may be
domain specific, product specific or generic. In general, the productivity
increase from domain-oriented and product-oriented components is higher
than from generic components (see Figure 1). However, the reusability of
generic components is higher than that of domain-oriented and product
oriented components. Immature domains and those in which great variability
exists have little scope for domain-oriented reuse, and application
development may be limited to using generic components or custom
development.

Component-based system development is the process of composing
systems from pre-fabricated software components. The development process
described here is mainly concerned with COTS software. Figure 2 shows our
suggested 4-phase component-based application development process. It
develops some of the early ideas on component-based development [1], [2] to
provide a scalable process with a clear separation of concerns.

The negotiation phase attempts to find an acceptable trade-off amongst
multiple (often) competing development attributes. The planning phase sets
out a justification, objectives, strategies (methods and resources to achieve
development objectives) and tactics (start and end dates, and tasks with
duration) for the project.

www.manaraa.com

230 Chapter 13

The development phase implements the agenda set out in the planning
phase. The first step in application development is the definition of system
requirements. The requirements stage elicits, ranks and models the system
requirements iteratively with the verification and negotiation and planning
phases. The design stage partitions the requirements into sub-systems and
eventually components, which can be replaced with COTS software. Like the
requirements stage, the design stage proceeds in tandem with the verification,
negotiation and planning phases, and may revisit the requirements stage from
time to time. The composition stage replaces abstract design components with
off-the-shelf "equivalents". Off-the-shelf software components are packaged
in many different forms (e.g. function libraries, frameworks and legacy
applications). The composition process must devise mechanisms for
integrating different components without compromising the system quality.
Beyond this stage the system goes into a management cycle (discussed in
Section 7).

Productivity

Application packages

Domain models and
processes

Frameworks

Design patterns and
encapsulated components

Class libraries

Classes and objects

Reuse potential

Figure 1. Productivity versus reuse potential

The verification phase is intended to ensure that there is an acceptable
match between the COTS software and the system being built. This is
important because perceptions of software quality may vary amongst
component producers. In addition the blackbox nature of most COTS software
diminishes the scope for correcting errors later in the system development.
The verification phase varies in focus and detail across the development
cycle. A matching colour scheme has been used to indicate the
correspondence between different development stages and the aspects of
verification that apply to them. At the requirements stage, verification is used
to establish the availability of COTS software and viability of a COTS-based
solution. At the design stage verification is concerned with ensuring that the
design matches the system context (i.e. in tenns of non-functional

www.manaraa.com

13. COTS Component-Based System Development 231

requirements, architectural concerns and business concerns). This may require
detailed blackbox testing of the COTS software and architectural analysis. At
the composition stage verification translates to design validation, through
component assembly and system testing.

ht.>raO'llsl1 availabilitr of
cors sofiware

-rest subsl'stem assembll'

-Perform regressIOn
testing

-Peljorm lIOn-junctIOnal
te>ting

(

I
I
I
I
I

/--

Negotiation and planning

~~M+{,-__ p,...la_n_...)

Define system
requirements

-Elicit requirements
-Scope requirements
-Model requirements

-Partition/assign requirements

-Establish componellt interface

-Compose abstract design elements

------ \

Figure 2. COTS-based development process

3. REQUIREMENTS ENGINEERING

\
I
I
I
I
I
I
I
I
I
I

It is generally acknowledged that good requirements engineering is
essential for successful component-based system development [3]. However,
few methods address the problem of how requirements for component-based
systems are derived. Cunent approaches are based on procurement models in
which the requirements process is driven by the availability of COTS
software. In one such a model, Vidger [4] proposes that system requirements

www.manaraa.com

232 Chapter 13

should be defined according to what is available in the marketplace, and that
organisations should be flexible enough to accept COTS solutions when they
are proposed. Vidger notes that overly specific requirements preclude the use
of COTS components and should be avoided. This is a reasonable approach,
however, most systems have requirements that are unavoidably 'specific', for
example, critical systems. Critical systems are likely to have stringent, often
competing quality requirements (e.g. performance, efficiency, safety,
reliability etc.).

The PORE (Procurement-oriented requirements engineering) method [3],
proposes an approach in which the requirements process is tightly integrated
with a process for selecting COTS products. Central to the PORE approach is
an iterative process in which candidate products are tested for fitness against
increasing levels of requirement detail. Products that fail to meet requirements
are rejected at various levels. While the PORE approach provides insight into
product evaluation processes, its singular focus on COTS component
selection has been criticised for ignoring system level concerns and the
important role architecture plays in formulating the requirements for
component-based systems [5]. The approach used in PORE makes it difficult
to address system-level concerns and reduces the scope for requirements
negotiation. Secondly, components are often intended to "plug" into existing
or pre-defined architectures. It is important that architectural considerations
are taken into account as they constrain the way a new component connects
and interacts with other system components, and form the basis for assessing
the impact on the system of new components.

Proper requirements fonnulation is critical to the success of component
based systems. However, requirements methods must recognise that in
addition to conventional stakeholder requirements problems, component
based systems also present problems that are unique to the componentware
paradigm. The principal challenge in requirements engineering for
component-based systems is to develop requirements models that allow us
make the best use of the available COTS technology by balancing aspects of
requirements with the architectural assumptions embodied in COTS software
and the capabilities of COTS software.

A competent requirements engineering process for component-based
systems must address the following issues:
1. Provide a means for eliciting requirements. Component-based systems

development is primarily a problem of integrating black-box components
rather than creating components. It is essential that requirements for the
environment in which the intended system is going to work be clearly
understood. This often involves understanding the requirements of the
target system from actor, stakeholder and system perspectives. Actors
correspond to system operators and existing software components that
interact directly with the target system. Stakeholders include specific

www.manaraa.com

13. COTS Component-Based System Development 233

departments of the user organisation (e.g. finance, training etc), existing
legislation, COTS certification organisations and COTS vendor. A System
perspective is the embodiment of global system requirements that the
proposed system must conform to. These include dependability (i.e.
availability, security, performance, reliability and safety) and system
resource requirements.

2. Provide a means for ranking and scoping requirements. Requirements
ranking provides for incremental development and early validation of
COTS products. The requirements method should provide a mechanism
for identifying, prioritising and scoping requirements at different levels of
abstraction.

3. Provide "hooks" to a process for identifying and evaluating off-the-shelf
software components. Early evaluation is useful for establishing the
availability and capabilities of the COTS software.

4. Provide a mechanism for mapping requirement specifications to COTS
capabilities. It is also important that the scheme provides a mechanism for
supporting negotiation. This is because in practice the desired level of
COTS software capability and quality is rarely achieved. For certain
critical requirements, a COTS solution may not be adequate or even
appropriate.
Finally, it is important to mention that requirements definition and system

design are not linear but highly interlaced activities. There are several reasons
for this:

The system being specified is likely to be part of an environment made up
other COTS software components. The components in the environment are
likely to impose requirements on the system being specified and to
constrain the system design.
For non-trivial systems, some architectural design is often necessary to
identify sub-systems and their relationships. The requirements for the sub
systems may then be specified.
Reasons of budget, schedule or quality may force an organisation to reuse
particular software components in constructing the new system. This
constrains both the system requirements and the design.
System requirements are subject to change when the development
confronts the reality of design (e.g. need to trade-off requirements to
resolve competing quality attributes) and limited budgets.

4. SYSTEM DESIGN

Component-based system design describes how the components that make
up the system interact to deliver the required functionality, and how the
design process reasons about the appropriateness of particular components

www.manaraa.com

234 Chapter 13

and services in different contexts. Different COTS products may result in
different system architectures to achieve desired quality attributes because of
the different constraints they impose on the system design [6]. A design trade
off may, for example, require that critical components interact only through
"validation" components to ensure that the desired level of system security or
safety is maintained, even if this means a loss in system perfonnance.

The design process starts with the partitioning of the system requirements
(services and constraints) into logical "components" or "sub-systems". Figure
3 shows how a top-down process may be used to partition the system by
clustering services to reflect desired functionality and quality attributes. The
initial partitioning is driven by architectural considerations (e.g. safety,
perfonnance, security, availability etc.) and may be supported by design
patterns that lend themselves to those quality considerations.

Subsequent partitioning is subject to a negotiation process that takes into
account business concerns, architectural considerations and COTS software
considerations. The design process is supported by verification to ensure an
acceptable match between the COTS software and the desired system
features. Verification may involve any or all of the following activities:
- Tests perfonned to verify COTS software functionality.

Architectural analysis to establish how well the design supports desired
quality attributes (e.g. performance, security and availability etc).

- In certain cases where matching COTS software cannot be found (e.g.
incompatible interface, incompatible data model etc.), a decision may have
to be made to accept the component and to correct the anomaly using
"glue code").

- In extreme cases of incompatibility, it may make better design sense view
parts of the architecture as a "place-holders" for custom developed
components.
In order to support the design process we need mechanisms that allow the

designer to define architectural elements and their relationships, and to
support their evolution through levels of abstraction. The Catalysis method [7]
is one of a few of software design methods that explicitly supports
component-based system design. The Catalysis method is based on the
Unified Modelling Language (UML) and focuses on designing the basic
interface signature that characterises the component functionality. A basic
component interface signature comprises provided and required services
interfaces, and an events interface. A component service interface defines its
functional capability. An event interface describes the sequence of events
associated with the provision of a component service.

Formal Architecture Description Languages (ADLs) are also emerging as
an effective way of describing component-based system designs. ADLs
provide a fonnal mechanism for representing software system architectures,
and as such they address the shortcomings of informal representations. In

www.manaraa.com

13. COTS Component-Based System Development 235

addition, sophisticated ADLs allow for early analysis and feasibility testing of
architectural design decisions [8], [9]. However, ADLs vary widely in their
ability to support the specification of particular architectural styles, variability
of the same architecture, support for mapping abstract system designs to off
the-shelf components and support for analysis.

An effective component-based design language should address the
following issues:
1. Provide a mechanism for partitioning the system requirements into a set of

independent sub-systems and components. For complex systems, this
activity may start at the requirements stage and develop during system
design. Architectural partitioning and requirements allocation is a critical
activity as it provides a means of structuring and organising the
specification. It fonns the starting point for a detailed specification of the
system.

2. Component-based design proceeds by evaluating candidate off-the-shelf
components and qualifying them according to the desired system
requirements, critical quality attributes, adaptability and architecture.
There are two important aspects component-based system design that
should be addressed by a good design method:

An effective design process should allow the engineer to decide which
COTS products are feasible (cost, technology, support, availability etc)
and which COTS products fit the design goal.
The main objective of designer is to achieve "fitness for use". Fitness is
a property that is achieved when the COTS product has an acceptable
match with the context in which it is going to operate. For many
systems there is often a need repair a design "misfit" through
component adaptation or custom development to resolve problems of
resource contention, quality requirements or architectural assumptions.
There is a need for design techniques that can allow the designer to
evaluate the extent of "fitness" of a component or group of components
in a context.

3. Provide a mechanism for distinguishing between component interfaces. A
component interface signature characterises the component functionality.
A basic component interface signature comprises the provided and
required service interfaces. In addition to its interface signature, the
properties and operations of a component interface may be subject to a
number of semantic constraints regarding their use. In general, there are
two types of such constraints: those on individual elements and those on
concerned with the relationships among the elements. Examples of the
first type are the definition of the operation semantics (e.g. in terms of pre
/post-conditions) and the range constraints on properties. An example of
the second type is inter-relating properties in terms of their value settings.

www.manaraa.com

236 Chapter 13

In designing component interfaces it is important to distinguish between
direct and indirect interaction:
~ Direct interaction. A specification of the interface protocols that

describes direct component interaction. This refers to cases where a
component knows of the existence of other components and directly
invokes one or more of their services.

~ Indirect interaction. A specification of interface protocols that describe
indirect component interactions. This refers to interactions that take
place through a standardised middleware (e.g. DCOM or CORBA) or
kernel. This refers to cases where components can inquire about the
possible supported services and use them without knowing where the
other component is located.

4. Component-based design proceeds by evaluating candidate off-the-shelf
components and qualifying them according to the desired system
requirements, critical quality attributes, adaptability and architecture.
There are two important aspects component-based system design that
should be addressed by a good design method:
~ An effective design process should allow the engineer to decide which

COTS products are feasible (cost, technology, support, availability etc)
and which COTS products fit the design goal.

~ The main objective of designer is to achieve "fitness for use". Fitness is
a property that is achieved when the COTS product has an acceptable
match with the context in which it is going to operate. For many
systems there is often a need repair a design "misfit" through
component adaptation or custom development to resolve problems of
resource contention, quality requirements or architectural assumptions.
There is a need for techniques that can allow the designer to evaluate
the extent of "fitness" of a component or group of components in a
context.

www.manaraa.com

13. COTS Component-Based System Development

Service specificoJiolls
(including specific constrainJs)

S;stem constraints

E§J B;J E§J
E§J B;J E§J

+

I Perforrrnn;e

I Seemly

A vailabilily

System resource
cm;t:rnints

"---------------------- ---------------------~

T~,-
Subsystelllz

([=I~I': I _ I
I I Subsyste~
I I

![-I~I I _ I
\ I

:==========~ ~
i (~ce) I ~ 11 I _ I

l I
-----------./ AlNract

SubsystelDt

interfaces

OR

_ Existing colq)(ment
_ (1I1ll1en-ents Service)

• and SeJVIce,;)

Figure 3. System design

237

www.manaraa.com

238 Chapter 13

5. SYSTEM COMPOSITION

System composition proceeds by replacing abstract design level
components with COTS software. As in design, the composition process may
be supported by an Architecture Description Language [9] that specifies
business, architectural and component-level constraints that COTS software
must satisfy before a replacement can occur. At this stage the use of ADLs
also provides useful traceability back to requirements.

Individual COTS components are developed to meet different
requirements based on different assumptions about their application contexts.
It is therefore common practice to adapt or tailor components for use in new
systems and environments. The extent to which components can be adapted
depends on the degree to which the component is configurable and the extent
to which its internal structure is accessible to the programmer. For "difficult"
cases, the integration process may make use of "gluing technology", which
may be unrelated to the components, to provide an interface between
components. Scripting languages such VB Script and JavaScript are
commonly used as gluing technology to manipulate collections of
components, which expose interfaces that conform to particular scripting
architectures (i.e. scriptable components). The idea of scripting components
extends to the construction of applications from several off-the-shelf
components to the manipulation of applications made up of several
components (e.g. graphics, spreadsheets etc.).

Understanding how components are packaged and delivered is central to
successful composition. Components are packaged and delivered in many
different forms [4]. These forms are closely related to the reuse/productivity
potentials shown in Figure 1. Forms of component packaging include:

Function libraries. This is probably the most common way of packaging
components. Components are delivered as a set of library routines, which
are linked at build time.

- Legacy applications. An application is part of an organisation'S structure
and workflow and is included as a component with the new system.

- Off-the shelf applications. A component may be delivered as a stand-alone
application (which mayor may not have open interfaces and data formats).
Integration can take different forms, such as API calls, shared data in
standard formats, event passing, drag-and-drop, etc. The most common
form of integration for these kinds of component is shared databases and
shared files.
Tools. Examples include graphical user interface builders and component
development environments. The tools typically work by having the
developer describe the system using the tool's notation. The tool generates
source code that can be compiled and linked with other components of the
system.

www.manaraa.com

13. COTS Component-Based System Development 239

- System services. Operating systems, databases, windowing systems, and
device drivers are typically purchased as COTS components.

- Applicationji-ameworks. Components may be packaged as replaceable
parts of a component framework. A framework is designed to be
extensible and to be integrated with other frameworks.
Appropriate component integration mechanisms are essential for

successful application development. The integration mechanism used depends
largely on how the component is packaged or delivered. There are four main
mechanisms for integrating COTS components:

Procedure calls. The COTS component is accessed by linking to a
procedural interface. Examples include components that are packaged as
function libraries, applications with an API, and databases with an SQL
interface.
Desktop supported capabilities. Desktops provide limited capabilities for
integrating components through features such as drag-and-drop,
clipboards, cut-and-paste etc. Office automation software is generally
integrated this way.
Data sharing. For applications that store data in a standard format,
integration is normally accomplished by having components read and
write each other's data. The shared data is usually stored in files or in a
shared database.
Frameworks. Frameworks can be tailored and extended in several ways:

1. Plug-ins. Developers can add functionality to application by
writing or purchasing a commercial off-the-shelf "plug-in". A plug
in notifies the framework of its capabilities and services and the
framework calls the plug-in as required.

11. Scripting. A script is an executable fragment of code, which is
dynamically linked to components of the system. A script can be
used to extend the behaviour of a component (by having the
component execute the script), or it can be used as a coordination
mechanism to integrate two or more components (by providing the
"glue" for linking the components together).

111. Inheritance. Inheritance allows specific parts with a component to
be specialised and modified.

The composition process may be affected by several factors including;
poor procurement and evaluation schemes, lack of adequate documentation,
different vendor-customer evolution cycles and lack of interoperability
standards and competing architectural requirements. Many of these issues are
also related to the long-term management of the system.

www.manaraa.com

240 Chapter 13

6. COTS VERIFICATION

The risk of composing systems from COTS components of unknown
reliability and the severely limited ability of the system integrator to modify
COTS components make component and system testing a critical aspect of
component-based development. Voas [10] suggests that the risk posed by
unreliable components should lead developers to think in terms of disposable
software systems. He observes that as we move toward component-based
software systems,· quality will play a key role in the maintainability of
component-based systems. Independent certification of COTS components
has also been suggested as a way of addressing the problem, particularly for
critical systems [11]. We regard component-based system testing as a process
that includes system verification and validation. The process starts from early
system formulation through to system composition. It includes the evaluation
of COTS software, the assessment of the impact of system changes and design
trade-offs, and the testing of the integrated system.

COTS software testing is motivated by several factors:
- Black-box nature. The black-box nature of COTS components means that

the system integrator has no access to the design considerations or source
code.
Perception oj quality. The perception of software quality may vary across
COTS software vendors and application domains. For many vendors the
time-to-market may be more important than delivering high-level
configurability, reliability, performance and other software qualities.
ExtraneousJeatures. A new version of COTS software is likely to contain
new features that are not used by the system. There is a risk that unused
features may still have some indirect impact on the system behaviour. This
risk can complicate testing if the COTS software must be tested for even
those functions or features that are not directly used by the system. The
explosion of the Ariane 5 rocket [12] is a classic example in which design
assumptions and untested software features can result in a costly a disaster.
Ariane 5 rocket failed because it included software ported from an early
version of the rocket (Ariane 4) that performed a computation that was
necessary early versions of the rocket but not in Ariane 5. The
computation caused an exception during the Ariane 5 flight, which was not
caught.
There are four different scenarios that can be encountered when testing

component-based systems [13]. These scenarios involve testing individual
components as well as the systems composed from the components:
- Prior to deployment. The system integrator needs to thoroughly test a new

COTS component prior to deploying it in a larger system.

www.manaraa.com

13. COTS Component-Based System Development 241

- Integrated system. If a new component is added to the system or an older
version replaced, the integrated system must be tested. Testing should also
be done if the system configuration is altered.

- Regression testing. It is a good idea to perform regression testing on
selective critical system components whenever new versions of other
constituent components are installed in the system.

- Non-functional testing. Various kinds of non-functional testing on the
system are required to ensure that the system meets the desired level of
perfonnance, dependability, stress and loading.
The testing of COTS components is constrained by the lack of source

code. Therefore, the system integrator restricted to perfonning only blackbox
testing. This process is further complicated by the fact that most COTS
components are supplied with limited documentation.

Harrold [12] suggests that the COTS software vendor should make a
summary of the test and analysis infonnation available with COTS software,
to facilitate further analysis and testing by the system builder. The
infonnation should be represented in a standard notation independent of the
language in which the component is implemented. The component should
provide suitable query facilities (for example, methods or operations) to
retrieve the summary infonnation.

The process of testing off-the-shelf components is complicated by several
factors:
1. Poor ~pec!fication. The blackbox nature of COTS components means

that the system integrator can only perfonn blackbox testing.
However, the lack of detailed component specification diminishes the
quality of testing that can be done.

11. Enterprise heterogeneity. Different, possibly competing vendors may
supply COTS components. Complex licensing arrangements would
mean that no one vendor has complete control over the development
artifacts associated with each component for the purposes of testing.

111. Technological heterogeneity. In a distributed environment, different
components may be developed for different hardware and operating
system platfonns. This would require that the testing method work on
multiple hardware and operating system platfonns (possibly multiple
programming languages).

IV. Repair response time. Often vendors and/or developers of the COTS
software have to be involved both in debugging the software and in
making repairs. This means that the response time for repairs is likely
to be detennined by the vendor(s), not the system management team.

v. Test adequacy assessment. A major problem with testing component
based systems is the lack of a sufficient theoretical basis for assessing
the adequacy of the tests.

www.manaraa.com

242 Chapter 13

To address these problems, component-testing regimes should serve six
aIms:
1. DiscovelY. The process should expose undocumented features and/or

faults in the COTS software.
2. Ver!fication. The test process should verify producer data/specification.
3. Fitn ess for purpose. The process should establish how well the component

capabilities fit in with the system needs.
4. Masking. The process should establish the extent to which it is possible to

mask out unwanted component features.
5. Adequacy. The process should set realistic test adequacy criteria that take

into account the resources available and criticality of the component being
tested.

6. Early validation. The test process must aim at early component
verification and validation to minimise repair delays caused by slow
repair-response times.

7. MANAGEMENT CHALLENGES FOR
COMPONENT -BASED APPLICATIONS

The maintenance and extended development of a component-based
application poses many risks to the customer. The nature of the risk varies
with the nature of the development process, application domain, system
design characteristics and the choice of COTS software used [4]. These risks
are related to:
- Different producer-customer evolution cycles. Commercial software

component vendors and application developers are driven by different
goals and objectives. The disparity in the customer-vendor evolution
cycles may impose on the customer unplanned component upgrade
requirements that may impact adversely on the organisation and system.
Funding risk. The uncertainty about how often COTS components in a
system may have to be upgraded or replaced, and how much more of the
system may have to be changed as result, makes it difficult to plan and
predict costs over the life cycle of a system. In mixed vendor
environments, variations in licensing agreements may, in addition, lead to
wide variances in the cost of using COTS software.

- Vulnerability risk. Because of their blackbox nature, the use of COTS
software introduces a vulnerability that may compromise system
dependability.
Upgrade risk. Upgrading to a new version of COTS software poses several
risks:

1. Hidden incompatibilities may cause unforeseen side effects in the
system necessitating a complete system update.

www.manaraa.com

13. COTS Component-Based System Development 243

11. A new version of COTS software may have data formats that
require changes to be made to the formats and contents of existing
files and databases created by prior versions of the COTS software.

111. Changes in the quality attributes of a new version of COTS
software (e.g. performance, security, safety, reliability etc.) may be
incompatible with the user requirements. This may adversely affect
the operational capabilities of the system.

IV. A new version of COTS software may provide additional
capabilities that may have to be suppressed or restricted due to
security concerns.

v. The new version of COTS software may be incompatible with the
existing hardware or operating platform.

VI. The introduction of new hardware may force changes to interfacing
components, which may ripple through the system.

VII. Changes in the memory, processor and operating requirements for
a new version of COTS software may be incompatible with the
existing hardware and operating system.

Maintaining quality. Maintaining system quality involves ensuring that
any change to the system does not compromise its quality unacceptably. It
also means identifying sources of errors, repairing them and assuring that
the system is error-free. However, the blackbox nature of COTS
components and vendor priorities combine to make this a difficult task.

- Configuration management. Configuration management poses two main
risks for component-based systems.

1. New versions of components may have to be installed frequently.
11. It may be easy for maintainers at different sites of one system to

obtain replacement or upgrades for COTS software directly from
vendors without following configuration management procedures.

System management processes should aim at addressing the following
problems:
1. Asset management. Component-based system management processes must

provide a framework for managing the acquisition, usage and evolution
COTS products. The inventory of COTS products, versions, where they
reside, and the financial obligations licenses associated with them, are a
critical aspect of system management.

2. Upgrade impact analysis. It is impossible to detennine the cost and
difficulty of upgrading COTS software without proper analysis. The
system management process must consider the different ways that a COTS
product might cause changes to the operational system, the software in the
system, and the software maintenance process.

3. Quality control. Maintaining quality in component-based systems can be a
complex and expensive activity. There is need for cost-effective quality

www.manaraa.com

244 Chapter 13

control methods that address the problem of the fault identification, repair,
and the tracking of system fixes.

4. Configuration management. Configuration management is an essential
part of system management and component-based systems are no different
in that respect. The management process should provide a framework for
tracking and controlling the versions of COTS products and custom
software installed at all locations for the system.

5. Market research. The different vendor-customer evolution cycles present a
particularly difficult system management problem. Vendor evolution
cycles are largely driven by market changes. It is therefore important that
the management process provides a framework for factoring market
research into the process.

8. CONCLUSION

This chapter has provided an overview of the CBSE process and the
problems posed by the development paradigm at different stages of system
development. Component-based development is a highly iterative process
requiring simultaneous consideration of the system context (system
characteristics such as requirements, cost, schedule, operating and suppOli
environments), capabilities of the COTS products in the marketplace, viable
architectures and designs. The nature of COTS software and how it relates to
these aspects has been discussed. We have identified the challenges and
problems likely to be faced by component-based system developers and
outlined various ways to address the problems. The importance of verification
has been emphasised and a detailed discussion of the management challenges
of component-based systems provided. We accept that some of the proposed
solutions are likely to require further research before their effectiveness can
be ascertained. Equally, we believe that these problems must be addressed if
component-based system development is to become a successful software
development paradigm.

REFERENCES

(I] Boehm, B. and Abts, C. (1999) COTS Integration: Plug and Pray, IEEE Computer 32(I):
135-138, Jan. 1999.

[2] Brown, A.W and Wallnau, K.C. (1998) The current state ofCBSE, IEEE Software, 15(5),
1998

[3] Ncube, C. and Maiden, N (1999) PORE: Procurement-oriented requirements engineering
method for the component-based systems engineering development paradigm, Proc. 2nd
IEEE International Workshop all Componenl-Based Software Engineering, Los Angeles,
California, USA, May, pages 1-12, 1999.

www.manaraa.com

13. COTS Component-Based System Development 245

[4] Vigder, M., Gentleman, M. and Dean, 1.(1996) COTS Software Integration: State of the
Art, Institute for Infonnation Technology, National Research Council, Canada, 1996.

[5] Kotonya, G., Hutchinson, J., Onyino, W. and Sawyer, P (2002) Component-Oriented
Requirements Expression, To appear in Proc. of 16th European Meeting on Cybernetics and
Systems Research, Vienna, Austria, April 2002.

[6] Heineman, G.T. (1998) A model for designing adaptable software components, Proc 22nd

Annual International Computer Software and Applications Conference, pg. I 2 I - I 27, Vienna,
Austria, 1998

[7] D'Souza, D. F. and Wills, A. C., (1998) Objects, Components, and Frameworks With Uml:
TheCatalysis Approach, Addison-Wesley, 1998.

[8] Shaw, M. and Garlan, David.(l996) Software Architectures Perspectives on an Emerging
Discipline, Prentice-Hall, 1996.

[9] Medvidovic, N. and Taylor, R.N. (2000) A Classication and comparison Framework for
Software Architecture Description Languages, Trans. IEEE Software Eng., 26 (I), January
2000, pp.70-93.

[10] Voas, J.M. (1998) The challenges of using COTS software in component-based
development, Computer, 31 (6), 1998, p.44

[II] Dean, J., (1999) Timing the Testing of COTS Software Products, International Workshop
on Testing Distributed Componenl-based Systems. ICSE'99, Los Angeles, California, May
1999.

[12] Harrold, M.J., Liang, D. and Sinha, S. (1999) An Approach to Analysing and Testing
Component-based Systems, International Workshop on Testing Distributed Componenl
based Systems. ICSE'99, Los Angeles, California, May 1999.

[13] Rosenblum, D.S., (1997) Adequate Testing of Component-based Software, Technical
Reporl No. 97-34, University of California, Irvine, August 1997.

www.manaraa.com

Chapter 14

Component-Based Software Measurement

Yingxu Wang
Theoretical and Empirical Software Engineering Research Center, University of Calgary,
Canada

Abstract: Software components and component-based systems can be measured by
architectural and functional sizes and complexities, The current approaches to
functional measurement, such as function points, do not consider the internal
structures of components; while other approaches to architectural
measurements, such as the McCabe cyclomatic metric, do not consider 1I0s of a
system, This chapter introduces a new measurement approach, the equivalent
functional size (EFS), to the measurement of both architectural and functional
attributes of component-based software systems, The physical meaning of an
equivalent functional unit (EFU) of software is explored for the first time, and
the basic control structures (BCSs) of software are adopted to model the internal
structure and complexity of a component-based software system. This work
demonstrates that a software measurement system can be described in a formal
and algebraic way. Thus, new measures may be derived based on existing and
well-defined measures.

Key words: Software engineering, component-based software, measurement, metrics,
quantitative models, SEMS, formal description

1. INTRODUCTION

Software engineering metrics and measurement are important technologies
towards quantitative software engineering. It is recognized that "the history of
science has been, in good part, the story of quantification of initially
qualitative concepts." [6]. In this chapter software metrics are defined as a
standard or commonly accepted scale system, which defines the measurement
of software attributes and their units and scopes. Software measurement is
defined as a comparing process that quantitatively assesses a common

www.manaraa.com

248 Chapter 14

attribute of software entities against a given scale of metrics. In addition,
measure of software is defined as a relation between an attribute and a
measurement scale.

A variety of measures and metrics were developed towards the
measurement of object-oriented software [1, 7-9, 11, 14]. Some well-defined
proposals are such as Chidamber and Kemerer's metrics (CKM) suite [8], the
Goal/Question/Metric (GQM) paradigm [3, 4], Henderson-Sellers' 00
complexity metrics [11], Zuse's software measurement framework [24], and
the Software Engineering Measurement System (SEMS) [18-21]. CKM is a
set of six metrics for object-oriented software measurement, including
weighted methods per class (WMC), number of children of a class (NOC),
depth of inheritance tree (DIT), coupling between objects (CBO), response for
a class (RFC) , and lack of cohesion in methods (LCOM). However, CKM is
focused only on the architectural attributes of 00 software, and it is not a
complete model for measuring the 00 architectures [8, 11, 19].

GQM is a goal-oriented measurement paradigm for software engineering
developed from the 1970s to 1980s [3, 4]. The GQM method provides an
inference mechanism for deriving measures from measurement goals. A
GQM measurement framework can be developed by setting a number of
business goals, asking questions on achieving these goals, and deciding
metrics for measuring the achievement of these goals. However, GQM is a
typical empirical method, neither the goal, question or metric is formally
defined or ensured to be quantitatively measurable. Since metrics that may be
derived are dependent on the number and quality of questions, there is no
defined way to determine if the questions on a given goal are complete,
correct and verifiable. Furthermore, since all metrics may be described by
natural language, inconsistency and ambiguity of metrics are common
problems in implementing a GQM framework.

It is recognized that software engineering measurement is a systematic
activity rather than separated individual activities [17-21]. A software
engineering measurement system (SEMS) has been developed [18-20] to
address the practical requirement in quantitative software engineering. SEMS
consists of more than 300 formally defined software product measurement,
software engineering process measurement, and software engineering project
predictive and estimative measurement. As a comprehensive software
engineering measurement system, SEMS is designed to support different
approaches to software engineering measurement such as goal-oriented [3, 4,
21], process-oriented [17], and project-oriented measurement [17, 21].

This chapter explores architectural characteristics of component-based
software (CBS) and their measurability. A set of common attributes of CBS,
which is measurable and comparable independently from software projects
and programming languages, is formally modelled and described [18, 19].
The measurement framework for CBS covers component and system

www.manaraa.com

]4. Component-Based Software Measurement 249

measures of physical sizes, equivalent functional sizes, complexity and
common architectural attributes.

2. MODELS OF COMPONENT-BASED SOFTWARE
SYSTEMS

Definition 1. A software system, S, can be described as a graph:

S=<N, R> (1)

where N is a set of elements modelled by nodes of the graph, and R a set of
relations modelled by edges.

Definition 2. A component, C, of a software system is modelled by a
sub graph that represents a set of nodes and their relations within the software
system S, i.e.:

C = <Nc, {Rc u R' c}> (2)

where C 5;;::; S, Nc 5;;::; N Rc denotes the internal relations of the component,
Rc 5;;::; Nc x Nc 5;;::; R, and R 'c represents the external relations of the component,
R'c 5;;::; R, and R'c = {<e], e2> I (e] E Nc /\ e2 ~ N'c) v (e] ~ Nc /\ e2 E

N'c))}.A component-based system is a special software system in which all the
nodes are exclusively partitioned into different components. That is, the
elements of components do not overlap in a component-based system, but
there may be external relations across components. An example CBS is
shown in Figure 1, where the CBS consists of 3 components C] to C3, and
each component has its own internal (Rc) and external (R 'c) relations.

Figure 1. A sample component-based system (CBS)

Definition 3. A component-based system, S, can be defined by a graph that
consists of a set of components, C, and a set of external relationships, R',
between the components, i.e.:

www.manaraa.com

250 Chapter 14

s= <C, R'>(3)

where, for a given component C, Nc n N'c = ~, if Nc ~ Ci /\ N'c E Ci /\
Ci E C; andR'ci<;:;;;R', ifCi E C.

3. MEASUREMENT OF PHYSICAL SIZES OF
SOFTWARE COMPONENTS

Software sizes can be classified into three basic categories: the physical
size, mem01J1 size, andfunctional size. This section describes the measurement
on physical sizes of software components. Memory sizes of components are
simply the information bytes of their source or object code. The measurement
of functional sizes will be developed in Section 4.

The physical size of a CBS can be formally defined at the method, class,
component, and system levels.

Definition 4. The physical size of a method, Sp-m, is a meta measure that
can be directly counted by:

Sp-m = # (source lines of code) [LOC] (4)

where # is the cardinal calculus that counts the number of lines of source
code in a method. It is noteworthy that the unit of Sp-m is LOC, while the
name of the measure is "the physical size."

Definition 5. The physical si::e of a class, Sp-cl, is defined as the sum of

those of the nm methods included in the class. i.e.:Sp_cl = t sp-m (i)
i=1

[LOC] (5)

Definition 6. The physical size of a component, SpeC), can be defined as
the sum of the physical sizes of allncl classes comprising the component, i.e.:

SpeC) = f Sp-cl G) = f I Sp-m(i, i) [LOC] (6)
)=1)=1 i=1

Definition 7. The physical size of a component-based system S, Sp, is the
sum of all sizes of its n components, i.e.:

11

Sp = I Sp(Ck) (7)
k=1

www.manaraa.com

14. Component-Based Software Measurement 251

The property of Sp is non-negative, i.e.: S 2: O.
This section dealt with the physical sizes of software components and

component-based systems, from the bottom up, at the method, class,
component, and system levels. A supplement measure on functional sizes of
software will be developed in next section.

4. MEASUREMENT OF FUNCTIONAL SIZES OF
SOFTWARE COMPONENTS

The fundamental problems in measuring functional sizes of software have
long been investigated and yet to be solved. Because functional sizes have the
advantage of language and implementation independence, they are more
important and useful than the physical sizes of software, particularly for
COTS and in-house developed components.

A conventional measure of functional sizes is the function point [2]. The
function point method was developed in the context of infonnation systems
and it only considered system inputs and outputs (l/Os), and adopted a
complicated weighting system for a dozen factors. A major conceptual gap in
function points is that the physical meaning of what is one function point is
not clear and intangible.

A new software functional measure, the equivalent functional size (EFS),
is introduced in this section, in order to describe the fundamental attribute of
software functionality [19, 20]. Using the EFS, the size of a software
component or system can be detennined quantitatively. Therefore, the
following tricky questions in measuring component-based software can be
solved:
a) What is the functional size of a component?
b) Is there a basic measurement unit for software components in CBS?
c) Is a given component a primary (unity) component or a complex

component?
. d) How to measure and compare the functionality and complexity of two

similar commercial off-the shelf (COTS) components from different
vendors?

4.1 Basic control structures (BCSs) of component-based
software

In contrast to function points, the concept of EFS is not only based on l/Os
of a component, but also takes into account of its internal structures known as
the basic control structures.

www.manaraa.com

252 Chapter 14

Definition 8. The basic control structures (BeSs) are a set of essential
flow control mechanisms that are used for building logical structures of
software.

There are three Bess commonly identified: the sequential, branch, and
iteration structures [23]. Although it can be proven that an iteration can be
represented by the combination of sequential and branch structures, it is
convenient to keep iteration as an independent BeS. In addition, two
advanced Bess in system modelling known as recursion and parallel, have
been modelled by Hoare [12]. Wang [22] extended the above set of BeSs to
cover function call and interrupt.

The Seven categories of BeSs described above are profound architectural
attributes of software systems. These Bess and their variations are modelled
and illustrated in Table 1, where their equivalent functional weights (Wi) for
determining a component's functionality and complexity are defined. Fonnal
definitions of BeSs in the real-time process algebra (RTPA) have also been
provided in Table 1 [22].

4.2 The equivalent functional size (EFS) of software
components

A component's EFS is considered proportional to its numbers of inputs
and outputs, as well as to the complexity of its internal BeSs [18, 20]. In the
other words, EFS is a function of these three factors, i.e.: EFS = f (Ni ' No,
Wbcs). Thus, an equivalent functional unit of software can be defined as
follows:

Definition 9. The equivalent functional unit (EFU) of a software
component, sfo, is defined as the simplest component with one input (Ni= 1),
one output (No=1), and one unit of structural weight (Wbcs=1), i.e.:

Sfo = f (Ni , No, Wbcs) = Ni x No x Wbcs = 1 x 1 x 1 = 1 [EFU] (8)

Formula 8 models a tangible and primary unit of software functional size.
It is intuitive that the larger each of the above factors, the larger the EFS.
Based on this, EFS can be derived as a function of the three factors as shown
below.

www.manaraa.com

14. Component-Based Softvvare Measurement 253

Table 1. Definitions ofBCSs and their equivalent functional weights (Wi)

Category !l';;~. Structure W .. J. RIJ!8. notitioo
Sequence Sequence

l
1 P-1' Q

(§.S@)

Branch If -then{else 1

,:~
2 (~- T)-1'P

(lIt;) I (L~ -1' Q

Case

,LA
3 ? ~,P.':l1-

(CASE) o -1'PQ

11 -1' PI
I ...
I Uo-l -1' R",~
I '3J:;J! -1' (5

tteration For-do

CD
3 ~

(au RQ;,{D)
i-l

Repeat-until p 3 ecpBL .. r
(R 1) R (P)

?:l

V\lhile-do

CD
3 ecpBL .. r

(RQ1 R (P)
~O

Embedded Function call

+
2 Pt.F

Component (Fe)
(Nate: Only consider Y§.{;t.
g~tJQ~,~t functions.)

Recursion

fJ
3 POP

(lit;.~)

l.oncurrercy Parallel /\ 4 PUQ
(PAR)

~,
Interrupt

~
4 P

(IND II s~J@~. 71 Q -::,., 0)

www.manaraa.com

254 Chapter 14

Definition 10. The equivalent functional size (EFS) of a software
component, Sf. is defined as a product that is proportional to its number of
inputs (Ni), number of outputs (No), and the sum of structural weights of its 11

BCSs (Wbcs), i.e.:

11

Sf= Ni x No x Wbcs = Ni x No x L Wbcs(k) [EFU]
k=1

(9)

where the unit of EFS is the equivalent functional unit (EFU) as defined in
Formula 8.

The EFU provides a physical meaning for the functional size of software
for the first time [19, 20], indicating that one EFU of software is the simplest
component that consists of only unity input, output and equivalent functional
weight of BCS. This is a new development beyond conventional function
points as a measure of software functionality.

Based on Formula 9, the EFS of a complex component with lim methods,
Sj{C), can be derived as follows:

11m

Sf(C) = L Sf-m (i) [EFU] (10)
;=1

where Sf-m{i} is the EFS of the ith method that can be directly measured
according to Formula 9.

Similarly, the EFS of a component-based system S, Sf. is obtained below:

(11)
j=1 j=1 ;=1

where nc is the number of components in the software system.
Example 1: A simple software component, MaxFinder, is given in Figure

2. The equivalent weights for each of the three BCSs can be determined
according to the definitions in Table 1.

www.manaraa.com

14. Component-Based Software Measurement 255

Program MaxFinder,

max, x: int;

begin
max := 0; II BCS, (sequence): W, = 1
read (x);
while x<>O do II BCS2(iteration): W2 = 3

begin
if x> max II BCS3 (branch): W3 = 2

then max := x;
read (x);

end;
write (max);

end.

Figure 2. Example of a software component

For the giVlen example above, it can be determined that Ni = 1, No = 1,
and Wbcs = L Wi = 1+3+2 = 6. Thus, the EFS of this component can be
derived as: i~l

Sf = N j x No X W bcs = 1 x 1 x 6 = 6 [EFU]

It is noteworthy in Figure 2 that only one sequential structure is considered
for an entire method.

Based on the measures of physical size (Sp) and function size (Sf)
developed respectively in Sections 3 and 4, an interesting relationship
between them, the code functional efficiency (ef), can be derived as shown
below:

ef = Sf I Sp [EFU/LOC] (12)

It is found if only the measure of physical sizes is adopted in software
engineering, programmers would intend to develop larger software than
necessary, know as "thefatware." The code functional efficiency as described
in Formula 12 can be introduced to deal with this tendency. Because the
equivalent functional size (Sf) of software is stable for a given software
component or system, the large the physical size of the implementation (S),

p

the lower the coding efficiency (ef). Therefore, Formula 12 provides a useful
measure for controlling implementation efficiency of software projects.

www.manaraa.com

256 Chapter 14

5. MEASUREMENT OF COMPLEXITY OF
SOFTWARE COMPONENTS

There are various approaches toward the measurement of software
complexity [11, 24]. Conventionally, Structural complexity of software is
measured by the McCabe cyclomatic metric [15], while functional complexity
of software is measured by function points [2]. As developed in Section 4,
EFS provides a new approach to measure both the functional and structural
complexities of software components in a coherent way, and takes advantages
of both approaches.

5.1 Measuring component complexity by McCabe's
cyclomatic metric

When a component or system is represented by a control flow graph
(CFG), the complexity of a component, O'(C), can be measured by using the
McCabe cyclomatic complexity metric [15, 16].

Definition 11. The cyclomatic complexity of a given component C, 0 '(C),
is defined by the following formula:

O'(C) = v (G) = e - n + 2p [MCI] (13)

where e is the number of edges in the CFG of the component, representing
branches and cycles; n the number of nodes in the CFG that is equivalent to a
set of continuous sequential code; and p the number of connected components
in the CFG, where, for a single given component, p=l. The unit of O'(C) is a
McCabe cyclomatic index (MCI).

The McCabe cyclomatic complexity measure is a variation of Euler's
theorem in graph theory [13] defined as following:

n-e+r=2 (13')

where r is the number of regions, or the bounded areas + 1, in a connected
graph. Comparing Formula 13' and Formula 13, it can be seen that MCI is
equivalent to the number of regions, r, in Euler's theorem. It is noteworthy
that Euler's theorem, or Formula 13', holds only for a connected graph.
Therefore, when p > 1, neither Formula 13' or 13 is applicable.

Henderson-Sellers and his colleague suggested that the 2p section in
Formula 13 should be l+p [10], although the numerical results would be the
same whenp=l, i.e.:

O'(C) = e - n + p+1 [MCI] (13")

www.manaraa.com

14. Component-Based Softvvare Measurement 257

Ifwe consider a disconnected graph be separated components with p=1 for
each ofthem, then Formula 13" is always equivalent to Formula 13.

Definition 12. The architectural complexity of a component-based system,
0'(8), is defined as the sum of the McCabe cyclomatic complexities of its llc

components enclosed in the software system, i.e.:

n,

O'(S) = L O'(Cj) [MCI] (14)
j=l

Example 2. For a software component as shown in Figure 2, its CFG can
be derived as shown in Figure 3. According to Formula 13, its McCabe
cyclomatic complexity is:

O'(C) = e - n + 2p = 7 - 6 + 2 * 1 = 3 [MCI]

Figure 3. A derived flow-graph for Example I

5.2 Measuring component complexity by EFS

It is noteworthy that in the McCabe cyclomatic approach as described in
Section 5.1, only internal structures (loops and branches) are considered for
measuring a component's architectural complexity, while 1I0s that may
significantly affect functional complexity of a component are not considered.
This problem motivates the investigation of a new approach to measure the
complexity of components that takes into account both inttrnal structures and
I/0s.

The new approach to determining the architectural and functional
complexities of component-based software is the EFS-based method as
developed in Section 4. The EFS-based complexities of component O(C) and
system 0(8) can be defined respectively as shown below:

www.manaraa.com

258 Chapter 14

nm

O(C) = I SRi) [EFU] (15)
i=!

O(S) = I O(C) = I t Sf(j, i) [EFU] (16)
j=! j=! i=!

Example 3. Taking the same example as shown in Figure 2 and Example
1, the component complexity of this component is:

O(C) = Sf (C) = 6 [EFU]

The result shows that by considering both the architectural and functional
factors, component's complexity is equivalent to six EFUs.

6. MEASUREMENT OF ARCHITECTURAL
ATTRIBUTES OF SOFTWARE COMPONENTS

Supplementing the functional and complexity measures as developed in
Sections 3 to 5, this section describes a set of common measures for software
architectural attributes. Emphasis will be put on cohesion and coupling, which
provide useful indications of the design quality of component -based software
systems [5].

Definition 13. Class fan-aut, FOcl, is defined as the number of immediate
successor classes that directly inherit from a given class in the inheritance
hierarchy, i.e.:

FOcl = # (immediate successor classes)(l7)Formula 17 is equivalent to
the number of children metric in CKM [7].

Definition 14. Depth af inheritance, DPih , is defined as the number of
nodes in the longest branch of the inheritance tree from the root to the leaf
class.

DPih = max {#(nodes of inheritance branches)}(l8)This formula IS

equivalent to the depth af inheritance tree metric, DIT, in CKM [7].
Definition 15. Level af class reuse, Lei-reuse, is defined as a ratio between

the number of inherited classes (and objects) n 'cl and the total number of
classes (and objects) in an 00 software ncl, i.e.:

Lei-reuse = (n' cl / ncl) * 100% (19)

www.manaraa.com

14. Component-Based Software Measurement 259

This fonnula is equivalent to the measures proposed in [10].
In addition to the above simple architectural attributes for CBS, cohesion

and coupling are a pair of advanced architectural attributes. Referring to
Figure 1, the relations between a given component Ck and the remaining
components in a system can be categorized into internal relations R(Ck) and
external relations R'(Ck). The fonner are relations between methods that
belong to Ck; the latter are those between Ck and other components in the
system [19, 20].

Definition 16. Cohesion of a component Ck, CH(C/J, is defined as a ratio
between the class' internal relations R(C/J and its total internal and external
relations (R '(C/J), i.e.:

CH(Ck) = {#R(Ck) / (#R(Ck) + #R'(Ck))} * 100% (20)

where, #(Rc) is the number of internal relations, and #(R 'c) the number of
external relations.

Definition 17. System cohesion, CH, is defined as a mathematical mean of
those of the cohesion ratios of its 11 components in the system, i.e.:

n

CH = 11 n L CH(Ck) [%] (21)
k='

where, 0% ::::: CH ::::: 100% and it is expected that the higher values are
good.

Example 4. For the given component-based system as shown in Figure 1,
its component and system cohesions can be detennined as:

CH (Cl) = {#(Rc,) / (#(Rc,) + #(R'c,»} * 100% = (3 / (3+4» * 100% =
42.9%

CH (C2) = {#(RC2) / (#(RC2) + #(R'C2»)} * 100% = (4 / (4+4» * 100% =
50.0%

CH (C3) = {#(RC3) / (#(RC3) + #(R' C3»} * 100% = (1 / (1 +2» * 100% =
33.3%

and

www.manaraa.com

260 Chapter 14

n

CH = lin I CH(Ci) = 113 (42.9% + 50.0% + 33.3%) = 42.1%
i=l

Definition 18. Coupling of a component Ck, CP(CkJ, is defined as a ratio
of the class' external relations R'(Ck) and its total internal R(Ck) and external
relations, i.e.:

CP(Ck) = {#R'(Ck) / (#R(Ck) + #R'(Ck))} * 100% (22)

Definition 19. System coupling, CP, is defined as a mathematical mean of
all those of its n components, i.e.:

CP = 11 n t CP(Ck) [%] (23)
k=l

where 0% ~ CP(C) ~ 100% and lower values are better.
Example 5. For the given component-based system as shown in Figure 1,

its component and system coupling are:

CP (CO = {#(R'Cl) / (#(RC1) + #(R'Cl)} * 100% = (4 / (3+4» * 100% =

57.1%

CP (C2) = {#(R'C2) / (#(RC2) + #(R'C2»} * 100% = (4 / (4+4» * 100% =

SO.O%

CP (C3) = {#(R'C3) / (#(RC3) + #(R'C3»} * 100% = (2 / (1+2» * 100% =
66.7%

And

n

CP = lin I CP(Ci) = 113 (57.1% + 50.0% + 66.7%) = 57.9%
i=l

It is noteworthy that there is an interesting supplementary relationship
between a component's cohesion and coupling as follows:

CH (Ck) + CP(Ck) = 100% (24)

or, at the system level, it is:

www.manaraa.com

14. Component-Based Softvvare Measurement 261

CH + CP = 100% (25)

Therefore, when either cohesion or coupling is known, the other one can
be determined easily for a component or a CBS by Formulae 24 or 25.

7. CONCLUSION

This chapter has described alternative approaches to software system
measurement, especially those for component-based software. Models of
component-based software have been introduced. A set of formally defined
measures for the physical sizes, functional sizes, architectural/functional
complexity of software components and systems have been systematically
developed.

New measures on the equivalent functional size (EFS) and the physical
meaning of an equivalent functional unit (EFU) have been introduced, and
their advantages and applications in component-based software measurement
have been demonstrated.

It has been recognized that components and component-based systems can
be measured by both physical and functional sizes, and complexities of
software can be determined by both architectural and functional complexity
measures. This work has demonstrated that a softvvare measurement system
can be described in a formal and algebraic way. Thus, new measures may be
derived based on existing and well-defined measures.

ACKNOWLEDGEMENTS

The author would like to acknowledge the support of the research fund of
the Natural Sciences and Engineering Research Council of Canada (NSERC).
The author would like to thank Prof. B. Henderson-Sellers and other
reviewers for their constructive comments and suggestions.

REFEREN CES[I] Abreu, F.B. and R. Carapuca (1994), Candidate Metrics for Object
Oriented Software within a Taxonomy Framework, 1. Systems and Software 23, pp.87-96.

[2] Albrecht, A.1. and J.E. Gaffney (1983), Software Function, Source Lines of Code, and
Development Effort Prediction: A Software Science Validation, iEEE Transactions 011

Software Engineering, Vo1.9, No.6, pp.639-648.
[3] Basili, V.R. and D. Weiss (1984), A Methodology for Collecting Valid Software

Engineering Data, IEEE Trans. Software Engineering. Vo!. 10, Noi. 6, pp.728-738.
[4] Basili, V.R., C. Caldiera, H.D. Rombach (1994), Goal Question Metric Paradigm, in J.J.

Marciniak ed., Encyclopedia of Software Engineering, Vol. I, John Wiley & Sons, pp. 528-
532.

www.manaraa.com

262 Chapter 14

[5] Briand, L., J. Daly and 1. Wuest, (1998), A Unified Framework for Cohesion
Measurement in Object-Oriented Systems, Empirical Software Engineering - An

International Journal, Vol.3, No.1, pp.65-117.
[6] Bunge, M. (1967), Scientific Research I and II, Springer-Verlag, Berlin.
[7] Chidamber, S.R. and C. F. Kemerer (1994), A Metrics Suite for Object Oriented Design,

IEEE Trans. on Software Engineering, Vol. 20, pp.476-498.
[8] Churcher, N.!. and Shepperd, M.J. (1995), Comments on "A Metrics Suite for Object

Oriented Design," IEEE Trans. On Software Engineering, Vol. 21, No.3, pp.263-265.
[9] Drake, T. (1999), Metrics Used for Object-Oriented Software Quality, in S. Zamir ed.,

Handbook of Object Technology, CRC Press, Boca Raton, pp. 46.1 - 46.17.
[10] Henderson-Sellers, B. and D. Tegarden (1994), A Critical Re-Examination of Cyclomatic

Complexity Measures, Proceedings on Software Quality and Productivity (ICSQP '94),
pp.328-335.

[II] Henderson-Sellers, B. (1996), Object-Oriented Metrics - Measures of Complexity,
Prentice-Hall, Englewood Cliffs, NJ.

[12] Hoare, C.A.R., U. Hayes, 1. He, c.c. Morgan, A.W. Roscoe, J.W. Sanders, !.H. Sorensen,
1.M. Spivey, and B.A. Sufrin (1987), Laws of Programming, Communications of the ACM,
Vo1.30, No.8, August, pp.672-686.

[13] Lipschutz, S, and M.L. Lipson (1997), Schaum's Outline of TheOl)' and Problems of
Discrete Mathematics, McGraw-Hili Co. Inc., pp. 201.

[14] Lorenz, M. and J. Kidd (1993), Object-Oriented Softwcre Metrics: A Practical Guide,
Prentice-Hall ECS Professional, UK.

[15] McCabe, T.J. (1976), A Complexity Measure, IEEE Trans. on Software Engineering,
Vol.2, No.4, pp. 308-320.

[16] McDermid, J. (1991), Software Engineer's Reference Book, Butterworth-Heinemann ltd.,
Oxford, UK, Chapter 30, pp. 10.

[17] Wang, Y. and G. King (2000), Software Engineering Processes: Principles and
Applications, CRC Press, USA, 752pp.

[18] Wang, Y. (2001 a), A Software Engineering Measurement Framework (SEMF) for
Teaching Quantitative Software Engineering, Proceedings of the 200i Canadian
Conference on Computer Engineering Education, Fredericton, Canada, May, pp. 88-101.

[19] Wang, Y. (200 I b), Formal Description of Object-Oriented Software Measurement and
Metrics in SEMS, Proceedings of the 7th international Conference on Object-Oriented
information Systems (OOIS'Oi), Calgary, August, Canada, pp.123-132.

[20] Wang, Y. (2002a), Software Engineering Measurement: An Applied Framework of
Software Metrics, CRC Press, USA, to appear.

[21] Wang, Y. (2002b), On Software Engineering Measurement Deployment in GQM,
Proceedings of the 2nd ASERC Workshop on Quantitative and Soft Computing Based
Software Engineering (QSSE'02), Banff, AB, Canada, February, pp.I-8.

[22] Wang, Y. (2002c), The Real-Time Process Algebra (RTPA), Annals of Software
Engineering: An international Journal, Vol. 14, USA, Oct.

[23] Wilson, L.B. and Clark, R.G. (1988), Comparative Programming Languages, Addison
Wesley Publishing Company, Wokingham, England.

[24] Horst Zuse (1998), A Framework of Software Measurement, Walter de Druyter, Berlin.

www.manaraa.com

BIOGRAPHIES

Jan Oyvind Aagedal: MSc from Norwegian University of Science and
Technology, 1992, and PhD from University of Oslo, 2001. PhD topic was
support for quality of service (QoS) in development of distributed systems,
with a focus on specification of QoS. Started in 1993 and has since 2001 been
a senior scientist at SINTEF Telecom and Informatics. Has worked on
CORAS since the project started in January 2001.

Colin Atkinson: Dr. Colin Atkinson is a professor at the University of
Kaiserslautern, Germany, and a project leader/consultant at the affiliated
Fraunhofer Institute for Experimental Software Engineering (lESE). Prior to
that he was an associate professor of Software Engineering at the University
of Houston - Clear Lake. His interests are centered on object and component
technology and their use in the systematic development of software systems.
He received a Ph.D. and M.Sc. in computer science from Imperial College,
London, in 1990 and 1985 respectively, and received his B.Sc. in
Mathematical Physics from the University of Nottingham in 1983.

Franck Barbier: Dr. Franck Barbier is professor in software engineering
at the university of Pau (France). He is the director the computer science
research institute (LIUPPA) of the university of Pau. His research interests are
object modelling, component modelling, UML and seamless
object/component development. He is the scientific consultant of Reich
Technologies, a French company among the 17 companies that built UML 1.1
at the OMG in 1997.

Nicolas Belloir: Nicolas Belloir got his M.Sc. in computer science at
University Paul Sabatier (Toulouse) in June1999. He has worked in industry
during two years for the software company Transiciel. Currently, he is PhD
student (since may 2001) at the University ofPau in the LIUPPA in the AOC
(Agent, Object and Component) group. His research topics are in the CBSE
domain and include development methods, techniques for software
composition and certification/validation of this composition.

Jean-Paul Bodeveix: he is an old student of the "Ecole Normale
Superieure" of Cachan and received a PhD of Computer Science from the
University of Paris-Sud in 1989. This research was partially supported by the
ESPRIT project PADMA V ATI aiming at the development of a parallel
architecture for symbolic computations. He is now an assistant professor of
computer science at the University of Toulouse III, France. He has been
interested in concurrency, typing and its connection to object-oriented
programming, logic programming, rewriting techniques, fonnal specifications

www.manaraa.com

and proofs. In this context, he has studied specification formalisms and proof
environments for the validation of protocols and the semantics of
development environments such as B.

Folker den Braber: Doctorandus (MSc) in Informatics at the University
of Leiden, the Netherlands 2001. Thesis written about modular refinement in
MSC. Employed as a research scientist at SINTEF since 2001. Interest in
evolutionary algorithms, Petri-nets and theory of concurrency.

Jean-Michel Bruel: Jean-Michel Bruel got its PhD at University Paul
Sabatier (Toulouse) in December 1996. Since September 1997, he is associate
professor at the University of Pau. Member of the TASC laboratory from
1997 to 2000. Currently member of the LIUPPA in the Agent-Object
Component group. Its research areas include development of distributed,
object-oriented applications, methods integration, and the use of fonnal
methods for the development of distributed systems.

Agusti Canals: Agusti Canals has been working at CS SI since 1981. He
is a project leader, a consultant manager and the "Club of Experts" co
ordinator for CS SI within the Quality and Technology Department. He has
presented papers on HOOD, Ada, UML and object business patterns at
several conferences (e.g. DASIA, AdaEurope, UML'Europe, ICSSEA ...), he
has also published (about UML process) in the Journal Object Oriented
Programming (JOOP) and he gives courses on software engineering for
different training structures in Toulouse, Paris Dauphine and Strasbourg.

Juan Carlos Cruellas: he received his PhD in Telecom Engineering in
1989. His most relevant activities include participation in European projects,
in standardisation groups and software developments. He has participated in,
among other things, to the following European projects: TEDIS SAM Project
(whose result was a new EDIFACT message, KEYMAN, devoted to
certificate management); ACTS Project "MULTIMEDIATOR: Multimedia
Publishing Brokerage Service" mentioned before; Telematics DEDICA
project, as member of the staff at esCERT-UPC, where strongly collaborated
with the technical manager; ETS PKITS project.

Theo Dimitrakos: Theo Dimitrakos is a senior scientist at CLRC
Rutherford Appleton Laboratory, the UK representative at the ERCIM WG on
e-commerce and a Visiting Research Fellow at King's College, London. He
has been leading CLRC participation in a number of European projects and he
is actively supporting the advancement of rigorous systems engineering
methods through industry and academic collaborations. Prior to his
appointment at CLRC he offered Technical Consultancy to a number of UK
companies and has been a systems analyst in the Electronic Commerce Group
of Logica UK, pIc. He has a PhD in Computing from Imperial College, UK,
and a BSc in Mathematics from the University of Crete, Greece.

264

www.manaraa.com

Petr Donth: Petr Donth was born in Czechoslovakia in 1950. He studied
at the Technical University (VUT) of Brno, and graduated in 1974. He
worked in the Czech research institute of water pumps (Sigma Olomouc) as a
programmer and analyst in the field of computer simulation for water pumps
and turbines. Seven years he worked in the Research institute of clothes (OP
Prostejov) as a system analyst and project leader, mainly on large projects for
clothes companies. Some years he was the Infonnation system director in the
Commerce Bank of Prague. From the year 1991 he is co-owner of company
KD SOFTWARE, where he works as technical manager and project manager.
He is company CEO from the year 1993.

Jose Luis Fermindez-Sanchez: Associate professor at the Technical
University of Madrid. His research interest includes requirements
engineering, software architecture, software testing and component based
development. He also works in industry where he has been involved in
software development for real-time systems and component based
development for avionics systems. He received a MSc in Aeronautical
Engineering and a PhD in Computer Science from the Technical University of
Madrid.

Rune Fredriksen: Rune Fredriksen will in short time complete his M.Sc
in Computer Science at 0stfold University College. The thesis is on the use of
risk assessment techniques in programmable systems. Specifically, he focuses
on the development of critical software in a Rational Unified Process context.
In June 2001 he joined Institute For Energy Technology/OECD Halden
Reactor Project where he works with safety and reliability issues in the
department of Computerised Operation Support Systems.

Kurt Geihs: Kurt Geihs is a professor for Distributed Systems at the
Technical University Berlin (TUB) in Gennany. His research interests include
distributed systems, operating systems, networks and software technology.
Cunent projects focus on QoS management in CORBA, component-based
software and middleware for mobile and ad-hoc networking. Before joining
the TUB he was a professor in the Department of Computer Science at the
University of Frankfurt, Gennany. From 1985 - 1992 he worked for IBM at
the IBM European Networking Center in Heidelberg, Gennany. Prof. Geihs
holds a PhD in Computer Science from the Technical University Aachen,
Germany, as well as master degrees in Computer Science from the University
of California, Los Angeles, California, and from the Technical University
Darmstadt, Gennany.

Thomas Genssler: Thomas Genssler has a diploma degree in Computer
Science from the University of Dresden and is cunently working on his PhD
in Computer Science at the University of Karlsruhe. In addition to his
academic activities, Mr. Genssler worked at an industrial consulting company

265

www.manaraa.com

for several years and has been involved in a number of industrial consulting
projects in the field of computer-aided quality management. Since 1997, Mr.
Genssler has been working for the Software Engineering Department
(Program Structures)at FZI (the Research Center for Computer Science) in
Karlsruhe, directed by Prof. Dr. Gerhard Goos. He has participated in a
number of industrial and research projects in the field of object-oriented and
component-oriented software development and re-engineering. Mr. Genssler's
current academic work includes research in the fields of program
transformation technology and invasive software adaptation. Mr. Genss1er's
PhD focuses on the fields of automated software transformation and
adaptation. Mr. Genssler is a regular contributor at national and international
conferences on software engineering and software evolution.

Bjorn Axel Gran: he received his M.Sc. in industrial mathematics from
the Norwegian Institute of Technology (NTNU Trondheim) in 1993, and the
PhD degree in software reliability from NTNU in 2002. In 1995 he joined the
OECD Halden Reactor Project, where ,he work in the section on software
verification and validation. His work has consisted of· research within
software dependability, and the main interest has been within the use of
Bayesian belief networks in the safety assessment of software based systems.
Since January 2001 he has been leader of the work package on Risk Analysis
in the EU-funded project "CORAS" (IST-2000-25031).

Hans-Gerd Gross: Hans-Gerhard Gross received his PhD from the
University of Glamorgan, UK, where he was concerned with real-time
systems development and test. Currently, he is responsible for building up
software testing competence at the Fraunhofer Institute for Experimental
Software Engineering. His main research focus is on model-driven approches
to system development and verification.

Brian Henderson-Sellers: Brian Henderson-Sellers is Director of the
Centre for Object Technology Applications and Research and professor of
Information Systems at University of Technology, Sydney (UTS). He is
author of eleven books on object technology and is well-known for his work
in OO/CBD methodologies (MOSES, COMMA, OPEN, OOSPICE) and in
00 metrics.

Siv-Hilde Houmb: Siv Hilde Houmb finished her MSc Thesis in
Informatics in April 2002 on the subject Mobile E-Commerce and Stochastic
Models. She worked as a system administrator and system developer at
Norwegian Institute of Air Pollution (NILU) from 1997 to 1999 and at
Te1enor R&D from 1999 to 2002. In 2002 she joined the security and mobility
group in Telenor R&D where she works with risk analysis, modelling and
tigerteam related activities. PhD student at the Computer and Information

266

www.manaraa.com

Science Dept. of the Norwegian University of Science and Technology in
Trondheim from August 2002 to July 2006.

Hyoseob Kim: Hyoseob Kim is a researcher in the Centre for HCI Design
of City University, London, UK. His research interests include COTS
evaluation and selection, software reuse, and software metrics. Currently, he
is involved in the BANKSEC (SECure BANKing application assembly using
a component based approach) EU Framework V Project. He received a PhD
in software engineering from Durham University. He is a member of ACM.

Gerald Kotonya: Dr Gerald Kotonya is a Senior Lecturer in Software
Engineering at Lancaster University's Computing Department. His principal
research interests are in Component-Based Software Engineering. He is
particularly interested in frameworks for developing adaptable component
architectures.

Bruno Lefever: Bruno Lefever is Principal Consultant at Computer
Associates. He has 15 years experience in the development of large-scale
business systems and related methodologies. Since the early nineties he
specialised in implementing Component-Based approaches in large IT
organisations, facing the challenges to consolidate object orientation with
traditional software engineering.

Neil Maiden: Neil Maiden is a Reader and Head of the Centre for Human
Computer Interface Design, an independent research department in City
University's School of Informatics. He received a PhD in Computer Science
from City University in 1992. He is and has been a principal and co
investigator of several EPSRC- and EU-funded research projects. His research
interests include requirements engineering and component-based software
engineering. Neil has over 75 journal and conference publications. He is also
co-founder and treasurer of the British Computer Society Requirements
Engineering Specialist Group.

Thierry Millan: He received his PhD from the Paul Sabatier University of
Toulouse in 1995. Thierry MILLAN participated in two TELEMATICS
projects (DEDICA, MIRTO) when he was at Alcatel. His participation in the
DEDICA project allows Thierry MILLAN to have been skilled in business
processes and in electronic commerce. After two years at the Alcatel
Company, Thierry Millan is now a teacher of UML at the Paul Sabatier
University and a researcher at the IRIT institute. His main research topics are
design methodology, persistence and object-oriented languages (Java, C++,
Ada 95). He has presented several papers concerning software engineering at
several conferences.

Noel Plouzeau: Noel Plouzeau is an assistant professor of computer
science at IRISAIIFSIC public research laboratoty, Rennes, France. Since
1985 he has worked on distributed algorithms, computer supported

267

www.manaraa.com

cooperative work (CSCW) environments, distributed applications and object
oriented design. He has led the research and development work on the Rusken
distributed framework for CSCW. He is an active member of the QCCS 1ST
project on quality controlled component based software. His current research
interests focus on techniques for defining and managing non-functional
properties in component based software. Noel Plouzeau is a permanent
research member of the Triskell research project led by Jean-Marc Jezequel
on reliable and efficient component based software engineering.

Anne-Marie Sassen: she received in 1987 her masters degree in
Computer Science from the University of Leiden (The Netherlands) and her
PhD from Delft University of Technology, also in The Netherlands, in 1993.
She has been working on various topics in Computer Science, among others
intelligent control systems, human computer interaction, software
engineering, e-learning and e-commerce. Her current position is technical
coordinator of the software engineering division of SchlumberbergerSema
Spain, and she is the project manager of the QCCS project.

Benedikt Schulz: he received a Diploma degree in Computer Science
from the University of Karlsruhe in April 1996. He joined the Program
structure group in May 1996 where he was involved in various national and
European projects as researcher and later as project manager. Since February
1999 he is the head of the group. He is preparing a dissertation in the area of
reengineering of object-oriented systems. Among his research interests are
Object-oriented software engineering, reengineering of legacy systems,
Software quality, Software processes and their improvement, component
based soft-ware engineering, aspect-oriented and adaptive programming and
Mobile Computing. He has project management experience from a lot of
successful projects. His experience with European Projects include the
projects PECOS, TROOP, FAMOOS and IMPROVE. He is a member of the
German Computer Society (GI) and member of several GI working groups
including Object Technology and Reengineering.

Friedrich Stallinger: Fritz Stallinger holds a research position at the
Department of Systems Engineering and Automation at the Johannes Kepler
University Linz, Austria. His research interests include component-based
software engineering, software process and quality management, systems
thinking and system dynamics, and the application of process modelling and
simulation to the areas of software engineering and software process
improvement. He studied computer science at the Kepler University Linz and
has been a consultant to the European automobile industry in the areas of
product and strategic planning and the co-ordination of new car development
projects. He is currently the project manager of the OOSPICE Project (IST-
1999-29073), a European Union funded international research project

268

www.manaraa.com

targeting at the development of a process improvement and development
methodology for component-based software engineering.

Yannis C. Stamatiou: He received his PhD from the Computer
Engineering & Informatics Dept. of the University of Patras in June 1998 and
from September 1998 to September 1999. He was a postdoctoral fellow at the
Computer Science Department of Carleton University, Ottawa, Canada under
a NATO scholarship. He has extensive experience on Unix and CIC++
programming, TCP/IP programming, parallel programming as well as the
design of microcontroller based secure embedded systems. He is currently
senior researcher at the Computer Technology Institute and Instructor at the
Department of Computer Engineering and Informatics of the University of
Patras.

Ketil Stolen: PhD in formal methods from Manchester University 1990.
Research fellow at Manchester University 1990-1991. Research associate at
the Technical University Munich 1991-1996. Scientist at the OECD Halden
Reactor Project 1996-1999. Currently senior scientist at SINTEF Telecom and
Informatics (since 1999) and professor at the University of Oslo (since 1998).
Has been the technical manager ofCORAS since the project was started up in
January 2001.

Jonathan Vincent: Dr Vincent is currently a researcher at Southampton
Institute (UK) where he leads the Intelligent Systems Laboratory. He received
a BEng (Hons) in Electrical and Electronic Engineering from the University
of Portsmouth, and then worked for a number of years as a design engineer in
embedded systems. He received an MSc in Computing (Software
Engineering) and was awarded a PhD in Computer Science by Nottingham
Trent University. His research interests include various aspects of software
engineering and computer science, in particular, systems development
methodologies, real-time and embedded systems, heuristic optimisation and
parallel computation.

Yingxu Wang: Dr. Yingxu Wang is a professor of Software Engineering
at the University of Calgary, Canada. He is the coordinator of "the Theoretical
and Empirical Software Engineering Research Centre (TESERC)". He
received a PhD from The Nottingham Trent University I Southampton
Institute, UK, and a BSc from Shanghai Tiedao University. He is the author or
editor of 5 books and over 150 papers. He is the chair of IEEE ICCI'02 and
program chair ofOOlS'OI.

Torben Weis: Torben Weis is a PhD student at the Technical University
of Berlin. His research interests are in the domain of modelling QoS aware
component systems with UML and the integration of QoS-contracts in
distributed component systems. He holds a "Diplom-Informatiker" degree

269

www.manaraa.com

(M.S. in Computer Science) from Goethe-University in Frankfurt, Gennany,
and is a core member of the KDE Open Source project.

270

www.manaraa.com

Index

assembly, 12, 14, 18,
24, 39, 47, 50, 51, 61,
121, 122, 123, 124, 136,
141,144,155,231

business component, 1,
2, 3, 4, 5, 6,7, 8, 9 , 10,
11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22,
23, 24, 27, 28, 29, 31,
36,38,47

commercial off-the
shelf, 2, 50, 84, 122,
159,227,239,251

component integration,
51,228,239

component interface,
13, 14, 153, 176, 234,
235,236

component language,
174

component modeling, 1,
8,13,16,18,19,20,24,
27,28,31

component testing, 53,
124

composability, 13, 18

connector, 18, 172, 175,
176,177,178,180,183,
186

contract, 13, 14

metrics, 247, 248

object-oriented
programming, 7,40,45;
153,186

quality of service, 7, 9,
12, 15, 18, 151, 152,
153,156,158,161, 165,
205

requirements
engineering, 1, 49, 50,
53, 54, 56, 59, 61, 124,
227,231,232

security, 3, II, 12, 15,
24, 49, 57, 152, 153,
154,159,189,190, 192,
193,194,197,200,201,
202,205,228,233,234,
243

software architecture, 5,
54, 186,209,210,212,
220

www.manaraa.com

software development
process, 5,18,121,138,
152,167,168

standards, 2, 4, 5, 11,
12, 13, 15, 24, 52, 120,
121, 136, 137, 138, 139,
140,144,145, 194,228,
239

unified modeling
language, 2, 142

